CONTRIBUCION AL CONOCIMIENTO DE LOS DEPOSITOS CAOLINIFEROS DE PONTEVEDRA
CUADERNOS DO LABORATORIO XEOLÓXICO DE LAXE

PUBLICACIÓN DE SEMINARIO DE ESTUDOS GALEGOS
Área de Xeoloxía e Minería
CONTRIBUCION AL CONOCIMIENTO
DE LOS DEPOSITOS CAOLINIFEROS
DE PONTEVEDRA

MANUEL CARAMES LORITE
Universidad Complutense de Madrid.

EMILIO GALAN HUERTOS
Universidad de Zaragoza.

SALVADOR DE AZA PENDAS
Instituto de Cerámica y Vidrio. C. S. I. C. Madrid.
ÍNDICE

<table>
<thead>
<tr>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTAS LIMIARES, por A. Varela</td>
<td>7</td>
</tr>
<tr>
<td>RESUME</td>
<td>15</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN</td>
<td>17</td>
</tr>
<tr>
<td>2. ANTECEDENTES</td>
<td>18</td>
</tr>
<tr>
<td>3. ASPECTOS ECONOMICOS DEL CAOLIN EN PONTEVEDRA</td>
<td>20</td>
</tr>
<tr>
<td>4. LOCALIZACION DE LOS DEPOSITOS ESTUDIADOS</td>
<td>24</td>
</tr>
<tr>
<td>4.1. Situación geográfica</td>
<td>24</td>
</tr>
<tr>
<td>4.2. Localización geológica</td>
<td>24</td>
</tr>
<tr>
<td>4.3. Areas caolinizadas</td>
<td>30</td>
</tr>
<tr>
<td>5. METODOS Y TECNICAS DE ESTUDIO</td>
<td>38</td>
</tr>
<tr>
<td>6. DEPOSITOS ESTUDIADOS</td>
<td>46</td>
</tr>
<tr>
<td>6.1. Cuenca de Porriño-Tui</td>
<td>46</td>
</tr>
<tr>
<td>6.2. Cuenca de A Guardia-O Rosal-Tomiño</td>
<td>72</td>
</tr>
<tr>
<td>6.3. Cuenca de Dena</td>
<td>100</td>
</tr>
<tr>
<td>6.4. Cuenca de A Estrada-Valga</td>
<td>108</td>
</tr>
<tr>
<td>6.5. Area de Nigrán</td>
<td>115</td>
</tr>
<tr>
<td>6.6. Area de Sanxenxo-O Grove</td>
<td>123</td>
</tr>
<tr>
<td>7. EFECTO DEL TRATAMIENTO TERMICO A ALTAS TEMPERATURAS SOBRE LA CONSTITUCION Y PROPIEDADES DE ALGUNOS DE LOS MATERIALES ESTUDIADOS</td>
<td>135</td>
</tr>
<tr>
<td>7.1. Introducción</td>
<td>135</td>
</tr>
<tr>
<td>7.2. Materiales seleccionados</td>
<td>140</td>
</tr>
<tr>
<td>7.3. Microscopía de alta temperatura</td>
<td>140</td>
</tr>
<tr>
<td>7.4. Preparación y cocción de las muestras</td>
<td>149</td>
</tr>
<tr>
<td>7.5. Densidad aparente y porosidad abierta</td>
<td>149</td>
</tr>
<tr>
<td>7.6. Estudio dilatométrico</td>
<td>153</td>
</tr>
<tr>
<td>7.7. Estudio por difracción de rayos-X</td>
<td>160</td>
</tr>
<tr>
<td>7.8. Estudio microestructural</td>
<td>167</td>
</tr>
<tr>
<td>7.9. Aplicación de los diagramas de equilibrio de fases</td>
<td>175</td>
</tr>
<tr>
<td>7.10. Resultados</td>
<td>185</td>
</tr>
<tr>
<td>8. CONSIDERACIONES FINALES Y CONCLUSIONES</td>
<td>189</td>
</tr>
<tr>
<td>REFERENCIAS BIBLIOGRÁFICAS</td>
<td>197</td>
</tr>
</tbody>
</table>
NOTAS LIMINARES

A códea terrestre garda nas súas profundidades reservas ainda non ben coñecidas de materias primas que o home apren-
deu a extrair e transformar en bens útiles para satisfacer as súas necesidades. Sen embargo, o achádego de xacimientos aproveitables debeuse mais ben á casualidade que a unha in-
vestigación metódica que veu da man dun crescente adianto tecnolóxico que se intensificou non hai máis de 150 anos.

A Xeoloxía como tal disciplina científica non comenza a coller corpo atá o século XIX, e si ao xeólogo escocés Hutt-
ton se lle considera o pai da moderna Xeoloxía, o seu co-
lega Guillermo Schulz o sería da Xeoloxía galega. Gracias ao seu teimoso traballo percorrendo infatigablemente os mon-
tes e vales galegos, remata en Ribadeo no 1834 a primeira "Descripción Geognóstica de Galicia" e no mesmo ano publica o "Mapa petrográfico do Reino de Galicia".

Con posterioridade xurden algunhas outras publicacións, froito de traballos aillados duns poucos investigadores en-
tre os que sobrancea o galego Xosé de Valenzuela Ozores (1855), Xosé Macpherson (1881), Charles Barrois (1882), ou máis recente, Primitivo Hernández Sampelayo (1922) ou Walter Carlé (1945).

Ainda tendo en conta estes traballois, se pode decir que a Xeoloxía de Galicia quedaba con falla dunha investigación máis pormenorizada sobor do terreo. O pazo desta época que podemos chamar a prehistoria da nosa Xeoloxía á súa Edade de Ouro, acadada nos nosos días, vai vencellado estreitamen-
te ao nome doutro investigator galego, Isidro Parga Pondal,
e ao traballo desenrolado polas dúas institucións que creou e dirixiu: o Laboratorio de Xeoquímica do Seminario de Estudos Galegos e o Laboratorio Xeolóxico de Laxe. Unha das súas primeiras tarefas foi o estudo das terras de Melide, Lalín e Fisterra xunto con outros compañeiros do Seminario, e axiña descubríu a imposibilidade de erguer os seus mapas xeolóxicos partindo dos mapas xeográficos dos que se disponía naqueles tempos. É deste xeito como o home apaixoadó pola xeoquímica, adícarse co mesmo arrebatamento ao estudo da xeoloxía galega que vai adequarendo interéz internacional gracias á publicación de numerosos e importantes traballos.

A Laxe comenzan a chegar profesores de universidades españolas, mais a maioría son extranxeiros de centros europeos como Montpellier, Zurich, Lisboa e principalmente de Leiden (Holanda) que foi a colaboración que durou máis tempo, vinte anos, e que deu como resultado casi un cento de tesinas con temática galega que na actualidade téntase traducir e publicar. "Hoxe pode asegurarse -son palabras súas- que Galicia é un dos países de Europa máis estudiados e millor coñecidos dende o punto de vista xeolóxico".

Resultado destes cincuenta anos de fecunda actividade foron os "Trabajos del Laboratorio Geológico de Laxe (La Coruña)", publicados ás súas costas; a realizañón do "Mapa Petrográfico Estructural de Galicia", a colaboración co "Instituto Geolóxico y Minero" para o erguemento da parte galega do "Mapa Geolóxico 1:50.000" e o Mapa Xeolóxico do Macizo Hespérico publicado nestas datas que se pode considerar a culminación dunha etapa quizais irrepetible.

O coñecimento i emprego dos minerais en Galicia remonta-
se á prehistoria, e xa historiadores como Estrabón e Plinio dan conta da explotación do estaño e do ouro, e de como os románs fixeron unhas obras de enxeñería nas Médulas e Monte-furado, en base ao emprego dun gran potencial humán e da e-nerxía hidráulica, que ainda hoxe nos deixan abraiados.

Nos séculos seguintes as actividades mineiras foron decando e na Edade Media tiñan un carácter local restrinxido á explotación do estaño e do ferro. No século XVIII, coinci-dindo co período ilustrado, a explotación déste chega ao seu máximo expoñente que é que Galicia conte coa primeira side-ruxia integral de España e unha das primeiras fábricas de louza, en base ao aproveitamento dos recursos minerais que Antonio Raimundo Ibáñez plánfica en Sargadelos. Así mesmo, volven á actividade as minas de estaño de Monterrei, pro trátase de feitos aíllados, froito de iniciativas personais que van desaparecendo denantes de rematar o século.

É por iso que a actividade mineira era cativa nos comen-zos do século XX, datas polas que chega á Coruña como Xefe do Distrito Mineiro da Coruña e Lugo, o enxeñeiro de minas asturiano Ramón del Cueto. Adicouse dende este intre deixa a súa morte, acontecida na Coruña no 1928, a estudar os orixenes desa inactividade e profundar na búsqueda de solu-cións, deixando recolleitas súas ideas nunha abundante obra escrita, pouco espallada por non ser coñecida. Poida que se-xa chegada a oportunidade de facerlle xusticia mediante a recopilación e publicación da súa obra na que moitos dos te-mas prantexados siguen tendo vixencia ainda despois de ter pasado máis de cincuenta anos.

Nun dos seus libros, quizais o máis coñecido, que escri-
biu en colaboración con outro enxeñeiro de minas, Antonio Má de Irimo, títulado "La Minería de Galicia" (1910) xa se fai esta premonitoria pregunta "¿Cómo puede explicarse, después de ese período industrial, precursor al parecer de otros más importantes, el estado de postración que hemos llegado que no sólo carecemos de Fábricas de beneficio sino que hasta las pocas concesiones en explotación pertenecen a empresas ajenas al país?".

Tamén escribiu outros libros xa menos conecidos que levan por títuo "La Minería de Galicia. Historia, situación actual y soluciones para su desarrollo" (La Coruña. 1919), "Impresiones sobre la Minería de Galicia" (La Coruña. 1922) y "Minería" en "Generalidades de la Geología de Galicia" (Barcelona s.f.) publicada por A. Martín.

Non parou aí a súa actividade divulgadora xa que segundo J.A. Durán, tivo unha colaboración asidua na "Voz de Galicia" dende o ano 1913 con traballos do xeito de "Galicia Minera. El país de los negocios despreciados", "La Minería en Galicia. La santa rutina". tódou nos que fai denuncia desa situación de postración á que tenta dar salida estimulando o espíritu empresarial das xentes galegas.

Aínda que hoxe a situación sectorial é algo millor e que algúns dos minerais como foi o wolfran tivo un auge temporal consecuencia do seu valor estratéxico, non o é no seu aspecto xeral que sigue padecendo a situación de dependencia que xa él denunciou. Por unha banda, un sector dirixido á explotación dos recursos enerxéticos e metálicos que se caracteriza por unhas outas inversiones tanto na fase de investigación como na de explotación soio ao alcance das grandes em-
presas vencelladas ao capital multinacional, á banca e ao sector público. Os minerais concéntranse a pé de mina para poder transporta-los cunha meirande economía a cámbeo de xenerar uns poucos postos de traballo en comparanza coas inversionés feitas. O ciclo produtivo, a metalurxia e os elaboardos metálicos que son os que xeneran un máis ouro valor engadido, non se fai en Galicia senón onde convéña aos intereses particulares ou de grupo destas compañías.

Por outra, o sector dos minerais e rochas industriais. Trátase a maioría das veces dunha minería autóctona na que as inversionés non son tan outas i en cámbeo o número de postos de traballo triplica ao anterior. Sen embargo, a comercialización dos productos manufacturados é controlada por empresas extranxeiras que fan o mesmo co mercado internacinal.

No ano 1979 créase a Área de Xeoloxía e Minería, dentro dun proxecto que terció o rexurdimento do Seminario de Estudos Galegos. Como obxectivo prioritario proponese o seguimento dos traballos encetados polos nosos devanceiros, profundando no estudo dos recursos minerais galegos de tal xeito que poidan servir de fonte documental no intre de proxectar unha política xeolóxica-mineira que teña no seu horizonte o desenvolvo industrial aseitado ás necesidades que Galicia ten plantexadas. Tamén terá prioridade a divulgación, non soio dos estudos que se vaian facendo, senón tamén aqueles outros que non sendo coñecidos poidan ter interese cara a consecución dos obxectivos sinalados.

Con este espírito, xustifícase a publicación deste libro que hoxe sal do prelo, nos Cuadernos de Xeoloxía e Minería
do Seminario de Estudos Galegos. Refírese ao caolín, unha das nosas materias primas de potencial interés non soio ac- tual senón tamén futuro, xa que Galicia produce o 50 % do que se obtén en España. É de coñecemento xeral que o caolín foi descuberto en China moito antes que en Europa e empre- gouse na fabricación da porcelana, mais o que xa non o é tanto é que o seu maior consumo está na fabricación do papel no que pode chegar ata un 30 %, ben como carga ou como capa de estucado ou que os preparados farmacéuticos tamén o em- pregan como carga. Estes produtos teñen un valor engadido máis outo pro compren dunhas técnicas avanzadas das que en España non se dispón por falla dunhas investigacións axeita- das, e por iso temos que importa-los cun custo cinco veces máis ao que nós exportamos prá industria cerámica europea.

E por iso o crescente interés que teñen os estudos sobor deste mineral que na política de abastecemento de materias primas do Estado Español, se considerou de carácter priori- tario.

O traballo que leva por títuo "Contribución al conoci- miento de los depósitos caoliníferos de la provincia de Pon- tevedra", é resultado da tesis que un dos autores, Manuel Caramés, presentou na Universidade Complutense de Madrid na que é profesor de Xeoloxía. A dirixiron dous especialistas cun gañado prestíxio cada un no seu eido: Emilio Galán, ca- deirádeo de Xeoloxía hoxe na Universidade de Sevilla, nos temas que se refiren á xeoloxía e mineraloxía dos xacimentos de caolín estudados, e Salvador de Asa, profesor de investi- gación no "Instituto de Cerámica e Vidrio" do C.S.I.C. nos relacionados coa súa aplicación na industria dos refracta-
rios.

Coido que a actualidade dos estudos feitos e o prestixio destes nomes que son unha garantía de rigor científico no seu tratamento, fará que o libro sexa de interés non solo prós científicos especializados nestes temas, senón tamén prós técnicos que desexen coñecer millor esta materia prima básica na industria cerámica.

Sargadelos. Febreiro 1983

Andrés Varela
Membro da Área de Xeoloxía e Minería.
RESUME

Encéntase o traballo cunha escolma dos depósitos caoliníferos que poidan ter interés dende o punto de vista económi- co ou polas características peculiares da súa xénesis. Des- tes depósitos elexidos fíxose, en base a unha labor de cam- po, o seu estudio xeolóxico e a recolleita de mostras que fo- ron identificadas mineralóxicamente coas técnicas instrumentais usuais, describindo seguidamente os resultados.

Os materiais que ofreceron un maior interés, estudáronse con vistas a súa aplicación na industria dos refractarios, feito que ven xustificado por existir naquela comarca algunhas fábricas en actividade, unha delas xa centenario.

No derradeiro capítulo, fáise unha valoración dos resul- tados obtidos e conclúese que os depósitos caoliníferos da provincia de Pontevedra, veñen da meteorización de rochas granítica ou metamórficas de carácter ácido, ou son sedi- mentarios o que vai influir nas súas propiedades técnicas. Dende o punto de vista mineralóxico, tanto unhos como ou- tros, compóñense de caolinita, halloisita, seixo, micas e feldespato potásico, presentando pequenas diferencias na súa cristalinidade e no contido de minerais minoritarios.

Polo que respecta ao aspecto técnico, encontráronse de- pósitos aproveitables, uns para a produción de caolín lavado e outros como arxilas refractarias tipo "fire-clay", ou plás- ticas, tipo "ball-clay", axeitadas para a fabricación de ma- teriais refractarios aluminosos, chamotas e gres, ainda que é necesario profundar máis o aspecto técnico, o que atá hoxe non se fixo.
1.- INTRODUCCION.

El estudio de los yacimientos españoles de caolín ha constituido durante los últimos años uno de los temas de trabajo más importantes del equipo del Prof. Martín Vivaldi, desde que en 1.968, y con ocasión del XXIII Congreso Geológico Internacional, se presentó una recopilación bibliográfica de los datos existentes hasta el momento, junto con algunos aportes inéditos (MARTIN VIVALDI y col., 1.969). Posteriormente han sido numerosas las contribuciones de su equipo sobre este tema, destacando el trabajo de GALAN sobre los aspectos geológicos, mineralógicos y genéticos de más de cuarenta yacimientos y afloramientos caoliníferos, GALAN, 1.972; GALAN y MARTIN VIVALDI, 1.972, 1.973-75, que contribuyó a dar una panorámica moderna y a escala nacional de este material.

Una vez superada esta etapa, se pudo delimitar las áreas geográficas y geológicas de mayor interés (GALAN y CARAMES, 1.974), para continuar el estudio a escala regional. Como zonas preferenciales se delimitaron las provincias de Pontevedra y A Coruña, la zona Norte de León, los límites Soria-Zaragoza y el Norte de Teruel que han sido temas de diferentes trabajos e investigaciones (GALAN y CARAMES, 1.974 a y b; GALAN, BRELL y LA IGLESIA, 1.974; MENDEZ y GALAN, 1.976; GALAN et al. 1.976).

La provincia de Pontevedra se eligió por ser una de las primeras productoras de arcillas caoliníferas en España, con grandes posibilidades de constituirse en uno de los principales centros nacionales de estos materiales.

Con la presente memoria se quiere contribuir al conoci-
imiento de los depósitos caoliníferos de esta provincia galega, tanto desde el punto de vista geológico y mineralógico, como desde el técnico y económico. (*)

2.- ANTECEDENTES

Los estudios publicados sobre materiales caoliníferos de Pontevedra están centrados sobre las arcillas terciarias y cuaternarias de los alrededores de A Guarda y Porriño. Merecen destacarse en este sentido los trabajos de MARTIN VIVALDI (1.969), ALEIXANDRE y SANCHEZ CONDE (1.969), GALAN y MARTIN POZAS (1.971), GALAN y MARTIN VIVALDI (1.974) y GALAN y CARAMES (1.974). De acuerdo con estos estudios, las arcillas de A Guarda pueden considerarse de tipo fire-clay, mientras las localizadas en la cuenca terciaria de Porriño-Tui presentan características similares a las del tipo ball-clay.

De acuerdo con la tipología propuesta por GALAN y MARTIN VIVALDI (1.972) para los caolines españoles, en Pontevedra se hallan representados los tipos III (Pontevedra), IV (Laxe) y V (Paraños). Los primeros son depósitos sedimentarios Cuaternarios o Neógenos, productos de alteración de rocas graníticas o gneísicas próximas. Son las más abundantes y a ellos pertenecen los localizados en el área de A Guarda.

(*) El contenido de este estudio corresponde a la Memoria presentada como Tesis Doctoral por uno de nosotros (M.C.L.), siendo dirigida por los autores (E.G.H.) y (S.A.P.).
<table>
<thead>
<tr>
<th>TIPO</th>
<th>EDAD; ROCA MADRE Y GENESIS</th>
<th>MINERALOGIA</th>
<th>COMPOSICION QUIMICA</th>
<th>FRACCIÓN < 20 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>NEOGENO Y CUATERNARIO
Sedimentario a partir de rocas ácidas Hercínicas y Pre-hercínicas alteradas.</td>
<td>A=K(pM), Ha, Q, FK
S=Gi, Mo, Cl, Di,
MH, Al,
Int (I-Mo)</td>
<td>SiO₂ = 45 %
Al₂O₃ = 35 %
Fe₂O₃ = 0,5-2 %
K₂O = 0-1 %
H₂O = 12-14 %</td>
<td>30-50 %</td>
</tr>
<tr>
<td>IV</td>
<td>ALPINOS
Hidrotermal, in situ, con alguna meteorización sobrepuesta, desarrollados en rocas Hercínicas y Alpinas.</td>
<td>A=K(T), MH, Q, FK, PL; M, I.
S=Cl, Mo, V, He, Go, Int(I-Cl)</td>
<td>SiO₂ = 45 %
Al₂O₃ = 35 %
Fe₂O₃ = 0,5-2 %
K₂O = 1 %
H₂O = 12-14 %</td>
<td>10-25 %</td>
</tr>
<tr>
<td>V</td>
<td>In situ, sobre rocas graníticas y gneísicas por meteorización</td>
<td>A=K(pM a pM-T),
Q, FK, Pl, M, I, Mo.
S=Cl, Go,
Int(I-Mo)
(I-Cl)</td>
<td>SiO₂ = 45-55 %
Al₂O₃ = 28-35 %
Fe₂O₃ = 3-4 %
K₂O = 1-2 %
H₂O = 10-12 %</td>
<td>10-30 %</td>
</tr>
</tbody>
</table>

M=Minerales abundantes; S=Minerales raros y no siempre presentes; Al=Alófana y geles de aluminio; Cl=Clorita; Di=Diáspora; FK=Feldespato potásico; Gi=Gibsita; Go=Goethita; Ha=Haloisita; He=Hematites; I=Illita; Int=Interesтратificados; K=Kaolinita; M=Mica; MH=Metahaloisita; Mo=Montmorillonita; Pl=Plagioclasas Na-Ca; Q=Cuarzo.
y Porriño, antes mencionadas. Los depósitos tipo Laxe son de origen hidrotermal, "in situ", sobre rocas plutónicas o metamórficas ácidas, mientras los del tipo Paraños son de origen meteórico. Ambos están escasamente representados en Pontevedra y carecen en general de interés económico. En la tabla II.1 se sintetizan las características geológicas y mineralógicas de estos tipos de yacimientos.

3.- ASPECTOS ECONOMICOS DEL CAOLÍN EN PONTEVEDRA

Los principales municipios con denuncios de caolín, en cuanto al número de los mismos, son: Porriño, Tui, Salceda de Caselas, A Guarda, Tomiño, Sanxenxo, Noalla, Dena, Valga y Ponteareas. En la figura 3.1 se han situado los principales municipios con denuncios.

En la tabla III.1 se recogen las producciones y precios del caolín y arcillas caoliníferas de Pontevedra en los últimos años. En los datos estadísticos referentes a arcillas cerámicas, existen contabilizadas como tales parte de las arcillas caoliníferas de la región, por lo que los valores expresados en esta tabla están por debajo de los valores reales de producción.

Merece destacarse que la producción de arcillas refractarias, descendió desde 1.972 a 1.978 alarmantemente, para recuperarse en 1.979 a cotas comparables a 1.971. Este período es coincidente con la crisis energética y su incidencia en la industria cerámica y metalúrgica. Por otra parte resulta extraño observar como la producción de caolín lavado desaparece a partir de 1.971. Probablemente es de suponer que partidas pequeñas de tal material procesado son incluidas junto con el material bruto como arcillas refractarias.
TABLA III.1.- Producciones y precios de caolines y arcillas refractarias (caoliníferas) de Pontevedra en el período 1.971-1.980

<table>
<thead>
<tr>
<th>AÑO</th>
<th>MATERIA PRIMA</th>
<th>PRODUCCION (Tm)</th>
<th>VALOR x 10³ pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>Arcilla refractaria</td>
<td>110.050</td>
<td>50.168</td>
</tr>
<tr>
<td></td>
<td>Caolín lavado</td>
<td>43.870</td>
<td>38.632</td>
</tr>
<tr>
<td></td>
<td>Caolín bruto</td>
<td>12.000</td>
<td>1.080</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>165.920</td>
<td>89.880</td>
</tr>
<tr>
<td>1972</td>
<td>Arcilla refractaria</td>
<td>74.900</td>
<td>30.430</td>
</tr>
<tr>
<td>1973</td>
<td>Idem.</td>
<td>49.570</td>
<td>21.048</td>
</tr>
<tr>
<td>1974</td>
<td>Idem.</td>
<td>43.591</td>
<td>21.388</td>
</tr>
<tr>
<td>1975</td>
<td>Idem.</td>
<td>37.215</td>
<td>20.053</td>
</tr>
<tr>
<td>1976</td>
<td>Idem.</td>
<td>29.869</td>
<td>19.078</td>
</tr>
<tr>
<td>1977</td>
<td>Idem.</td>
<td>27.862</td>
<td>18.514</td>
</tr>
<tr>
<td>1978</td>
<td>Idem.</td>
<td>6.582</td>
<td>6.710</td>
</tr>
<tr>
<td>1979</td>
<td>Idem.</td>
<td>125.240</td>
<td>55.528</td>
</tr>
<tr>
<td>1980</td>
<td>Idem.</td>
<td>96.126</td>
<td>50.924</td>
</tr>
</tbody>
</table>

Explotaciones activas durante 1979-80: 5

o cerámicas.

La mayor parte de las explotaciones actuales son intermitentes, debido principalmente a las condiciones meteorológicas de la provincia. Se suele parar el trabajo durante las épocas lluviosas, cuando las canteras se convierten en masas plásticas imposibles de arrancar y mover, y la explotación se realiza durante los meses de verano y otoño.

Los sistemas de explotación más frecuentes en la provincia, como en el resto de la región, son a cielo abierto, por canteras, cortas, bancos, etc. La mecanización es en general deficiente y el sistema de arranque y transporte se suele hacer a base de perforadoras, excavadoras, compresores, dumpers y en algunas ocasiones motovagonetas.

La minería del caolín en Pontevedra pasa por un estado crítico. Algunos de los yacimientos de la región están puestos al día en cuanto a investigación y procedimientos y por tanto son los que obtienen las calidades de caolines más normalizadas, pero en general, el caolín de Pontevedra, no está bien seleccionado y sobre él apenas se hacen ensayos técnicos y mineralógicos.

Los materiales caoliníferos de la región son usados en la fabricación de productos refractarios, materiales de construcción, grés y cerámicas especiales. La producción es prácticamente consumida por la industria local y regional.
4.- LOCALIZACION DE LOS DEPOSITOS ESTUDIADOS

4.1.- SITUACION GEOGRAFICA

De los depósitos caoliníferos existentes, se han estudiado 11, en base a su situación geológica y relación con la roca madre y en función de su importancia económica. De esta manera se estudian no sólo los más importantes por volumen, extensión y producción, sino también aquellos que presentan particularidades en cuanto a su génesis.

En la tabla IV.1 figura la relación de depósitos selecionados con su situación geográfica. Los señalados con "E" están en explotación y los señalados con "NE" (no explotados), aunque no están en explotación lo han sido anteriormente. (Fig. 3.1).

4.2.- LOCALIZACION GEOLOGICA

Litografía básica de la provincia de Pontevedra

Los materiales que constituyen el subsuelo de Pontevedra son en esencia rocas graníticas (intrusivas, gneísicas aná-téxicas) y en menor proporción, esquistos, cuarcitas, paragneises, anfibolitas, micacitas, migmatitas y rocas básicas (Fig. 4.1).

De la tectónica, estratigrafía y paleografía de la región, sólo se puede hablar todavía de una manera hipotética. La gran variedad de intrusiones magmáticas y el elevado grado de metamorfismo de las series sedimentarias existentes, con ausencia absoluta (hasta el momento) de restos de vida, hace muy difícil la cronología de los materiales que afloran
ESQUEMA GEOLOGICO DE LA PROVINCIA DE PONTEVEDRA

Fig. 4.1.
<table>
<thead>
<tr>
<th>Nº de orden</th>
<th>Localidad</th>
<th>Nombre de la mina</th>
<th>Hoja 1:50.000 (M.T.N.)</th>
<th>Coordenadas medias (meridiano de Madrid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Porriño</td>
<td>Mercedes (E)</td>
<td>261 (Tui)</td>
<td>4º55'45'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º06'15'' N</td>
</tr>
<tr>
<td>2</td>
<td>Porriño</td>
<td>Julieta (E)</td>
<td>261 (Tui)</td>
<td>4º56'24'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º07'50'' N</td>
</tr>
<tr>
<td>3</td>
<td>Porriño</td>
<td>Rogelita (E)</td>
<td>261 (Tui)</td>
<td>4º55'45'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º06'25'' N</td>
</tr>
<tr>
<td>4</td>
<td>A Guarda</td>
<td>Sta. Técla (E)</td>
<td>298 (A Guarda)</td>
<td>5º11'20'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41º53'20'' N</td>
</tr>
<tr>
<td>5</td>
<td>A Guarda</td>
<td>Ignacia (E)</td>
<td>298 (A Guarda)</td>
<td>5º09'40'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41º54'50'' N</td>
</tr>
<tr>
<td>6</td>
<td>O Rosal-Tomiño</td>
<td>Bernardino (NE)</td>
<td>299 (Tomiño)</td>
<td>5º06'17'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41º56'32'' N</td>
</tr>
<tr>
<td>7</td>
<td>Dena</td>
<td>Lourdes (NE)</td>
<td>185 (Pontevedra)</td>
<td>5º07'35'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º26'45'' N</td>
</tr>
<tr>
<td>8</td>
<td>Ponte Valga</td>
<td>Ana (E)</td>
<td>120 (Padrón)</td>
<td>4º58'39'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º42'43'' N</td>
</tr>
<tr>
<td>9</td>
<td>Nigrán</td>
<td>Nigranitas (NE)</td>
<td>261 (Tui)</td>
<td>5º06'11'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º08'28'' N</td>
</tr>
<tr>
<td>10</td>
<td>Sanxenxo</td>
<td>San Esteban (NE)</td>
<td>184 (O Grove)</td>
<td>5º10'48'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º26'44'' N</td>
</tr>
<tr>
<td>11</td>
<td>Sanxenxo</td>
<td>San Esteban 2ª (NE)</td>
<td>185 (Pontevedra)</td>
<td>5º09'44'' W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42º25'43'' N</td>
</tr>
</tbody>
</table>
en Pontevedra y su identificación con una determinada orogea-
nia. La pizarrosidad y la abundancia de intrusiones dificul-
tan además las relaciones laterales con otras regiones espa-
ñolas datadas.

Pontevedra está situada en las zonas paleogeográficas
IV y V de MATTE (1.968), conocidas como Galicia Media y Ga-
licia Occidental, respectivamente. Los depósitos caolinífer-
os se localizan en la zona V (Fig. 4.2) cuya estratigrafía
no puede ser establecida directamente, porque está consti-
tuida, como antes se indicó, por terrenos metamórficos azoi-
cos inyectados por granitos. Los materiales más antiguos han
sido afectados por las orogenias precámbrica y hercínica,
durante las que tuvieron lugar la mayor parte de las intru-
siones graníticas. El metamorfismo hercínico a que estuvie-
ron sometidos es casi absolutamente de tipo intermedio y ba-
ja presión.

El estudio petrográfico de las rocas ígneas y metamórficas
de Pontevedra ha sido realizado especialmente por PARGA
PONDAL (1.956), E. den TEX (1.966), MATTE (1.968) y FLOOR
(1.966) y sintetizadas en gran parte en las Memorias de la
Cartografía Geológica de España, a 1:200.000. Hojas números
8 (Lugo); 16-26 (Pontevedra, A Guarda); 17 (Ourense)
(I.G.M.E. 1.970-71).

Desde el punto de vista de la geología de los materiales
cailíníferos, nos interesa destacar las rocas graníticas y
los sedimentos posttectónicos (terciarios y cuaternarios) que
rellenan pequeñas cuencas y depresiones tectónicas.

Las masas graníticas caolinizadas más importantes son
los granitos gneisificados de dos micas, con riebeckita y
aegirina (con grandes variaciones petrográficas y textura-
DISTRIBUCION DE LAS PRINCIPALES CUENCAS TERCIARIAS DEL NW DE LA PENINSULA

Fig. 4.2
les), como los del monte Galiñeiro, cortados en ocasiones por pegmatitas y aplitas, los granitos gneísicos migmatíticos, los granitos granudos de dos micas (Gondomar-Vincios-Vigo, Arcade, Pontevedra y N. de Tui) que son explotados como roca ornamental y los granitos porfiroïdes de biotita, muy extendidos al W. de la provincia y al N. de Portugal, ricos en cuarzo y feldespatos blancos y rosados, sin ninguna orientación ni ordenación (granito de Porriño) y también explotados como roca ornamental.

Los sedimentos postectónicos están constituidos por li- mos y conglomerados de cantos rodados de cuarcitas y arenas del Mioceno y recubiertos en parte por depósitos Cuaternarios compuestos de gravas, arenas y arcillas.

Los materiales Cuaternarios, pueden ser de diversos orí- genes: depósitos de playas (O Grove), aluviales (rios Miño, Umia y Lérez) o costeros (A Guarda y Dena).

Los depósitos Terciarios normalmente rellenan fracturas y depresiones tectónicas en diversos puntos de Galicia. La principal cuenca Terciaria en Pontevedra es la de Porriño-Tui. El estudio lito-stratigráfico de la mayor parte de las cuencas terciarias gallegas ha sido realizado por BRELL (1.972) y BRELL y DOVAL (1.974). Los sedimentos terciarios son productos de alteración meteorica de las rocas graníticas o gneísicas cercanas, erosionadas normalmente durante etapas reexistentes. Los sedimentos Cuaternarios, aunque con igual procedencia, han tenido un transporte fluvial o torrecreal o incluso a veces han sido movilizados por fenóme- nos de solifluxión.

Algunas de las cuencas terciarias gallegas han sido da- tadas por MEDUS (1.965) como Mioceno, mediante estudio de
polen. Concretamente la cuenca de Porriño-Tui es considerada como Mioceno Superior (Tortoniese).

4.3.- AREAS CAOLINIZADAS

Cuenca de Porriño-Tui

La cuenca de Porriño-Tui tiene una disposición N-S y ocupa el valle del río Louro, entre la localidad de Porriño y la frontera portuguesa, ocupando una extensión aproximada de unos 30 Km. cuadrados (fig. 4.3).

Las rocas que constituyen su zócalo son exclusivamente de carácter ígneo o metamórfico y forman parte de la zona V de MATTE (1.968). Al norte y noroeste aflora un importante batolito granítico, el denominado "batolito de Porriño", constituido por un granito con biotita, muy ácido y de grano grueso, que junto con grandes cristales de cuarzo, contiene microclina normalmente caolinitizada, plagioclases y biotita alterada a clorita y como minerales accesorios, presenta apatito, zircón, esfena, turmalina y rutilo.

Los bordes meridionales de la cuenca están formados por un granito de dos micas y grano grueso; se trata de un granito intrusivo, posterior al ciclo anatóxico hercínico (FLOOR, 1.966). El borde occidental está limitado por las estribaciones más meridionales de la Sierra de Galiñeiro, constituida por un grupo de rocas de tipo gneísico.

En cuanto a la estructura de la cuenca, la mayoría de los autores que han trabajado en esta zona (CARLE, 1.949; BIROT y SOLE, 1.954; NONN, 1.966; BRELL, 1.972), la suponen formada a partir de una larga fractura de dirección N-S, que
Fig. 4.3
desde Padrón, se continúa hasta Tui, entrando en Portugal unos 200 Km. aproximadamente.

Dicha fractura, debido a su gran longitud, atraviesa zonas petrográficamente muy diferentes. Así observamos que al norte de la cuenca cruza el granito con biotita de Porriño y se continúa hacia el sur por el granito de dos micas de Tui, después de atravesar un complejo de rocas metamórficas probablemente precámbricas. Son muy frecuentes en Galicia (PARGA, 1.969), fracturas de esta misma dirección y normalmente van acompañados de un intenso sistema de diacasas de la misma dirección y origen.

Tiene especial interés el gran estado de alteración que presentan los materiales del zócalo de esta cuenca, y en especial en la granja de A Gándara, en donde llegan a ser prácticamente irreconocibles.

Los autores anteriormente citados, también destacan este fenómeno. NONN, (1.966) describe una serie de pequeños sondeos realizados en el valle del Louro, donde se encuentran materiales graníticos muy alterados en los primeros 20 m. de profundidad, e indica que la roca fresca no se localiza hasta unos 30 m. por debajo del nivel del mar. Destaca, al igual que BIROT y SOLE (1.954) que una alteración tan profunda no parece haber sido posible con una sola acción tectónica y una meteorización intensa, sino que además a lo largo de esta fractura han existido casi con toda seguridad fenómenos hidrotermales que han participado activamente en los procesos de alteración.

En resumen, podemos decir, que los materiales que constituyen el substrato de la cuenca Porriño-Tui, son rocas
ígneas hercínicas, granitos con biotita y granitos de dos micas, y sólo parte del borde occidental está constituído por rocas metamórficas antehercínicas, de tipo gneísico, unas feldespáticas y otras micáceas, cuya composición y génesis es muy distinta. Todo este conjunto de rocas viene afectado por fracturas de dirección NW-SE, frecuentes en Galicia, y además por otro sistema de fracturas de dirección N-S, acompañada de una fuerte diaclasación de esta misma dirección y posiblemente de una alteración hidrotermal. En el Terciario, tuvo lugar la removilización de un gran accidente, que presenta esta última dirección, que junto con una fuerte alteración y erosión de sus bordes, ha dado lugar a una depresión que sigue a esta fractura y que ha sido rellena por sedimentos detríticos, en parte durante el Mioceno.

Las perforaciones y las evidencias geofísicas (método eléctrico) sugieren que el grosor máximo del depósito terciario es de unos 35 m. y que en general no sobrepasa los 25 m. Las perforaciones efectuadas en el centro de la cuenca muestran una secuencia dominada por arenas y gravas más o menos arcillosas y con frecuentes cantos de cuarzo. Hacia las márgenes hay un rápido aumento en la proporción de material arcilloso, estando caracterizado por una sucesión de arcillas rojas, amarillas, y arenas arcillosas. Las arcillas grises y blancas son muy restringidas y cuando aparecen, también existen en su muro niveles de lignitos. Las secuencias y potencias varían de unos cortes a otros.

Los depósitos terciarios están recubiertos discontinuamente y de forma meandriforme por sedimentos cuaternarios, separados por una cicatriz erosiva. Los materiales cuaterna-
rios son conglomerados y arenas hacia el techo. Son de ori-
gen fluvial y pueden tener hasta 10 m. de potencia.

Este grupo de sedimentos finos detríticos con tonos ro-
os y grises dominantes y datados como Tortonienne, han sido
denominados como Formación Tui (BRELL, 1.972), está caracte-
rizado desde el punto de vista mineralógico por caolinita
e ilita, entre los minerales de la arcilla y por andalucita,
turmalina y zircón, entre los pesados.

El origen de estos sedimentos es difícil de precisar,
pues la mayor parte de las áreas fuentes de esta zona, aun-
que son petrográficamente variadas, tienen una mineralogía
muy similar, sobre todo en lo que se refiere a los minerales
accesorios, por tanto es difícil de predecir si los sedimen-
tos terciarios derivan a la vez de los granitos y de los
gneises micáceos, o son los gneises derivados de antiguos
granitos los que actuaron como fuente principal de los apor-
tes. La presencia de anfíboles y piroxenos verdes en los mi-
nerales densos encontrados en los sedimentos, minerales muy
frecuentes en los gneises de Galiñeiro y Peinador, parece
indicarnos que estas rocas metamórficas fueron las constitu-
yentes principales del área fuente.

Los minerales de la arcilla encontrados reflejan unas
condiciones climáticas favorables para que se realizase una
importante meteorización química en el área fuente.

Parecen el resultado de unas condiciones climáticas
agresivas, que además de originar caolinita, movilizaron los
óxidos de hierro, como lo prueba la presencia de lechos de-
tríticos endurecidos por cemento ferruginoso, que NONN
(1.966) cita en Casal con más de 1 m. de potencia, y las si-
licificaciones de algunos tramos detríticos, mencionados por SOS BAYNAT (1.965) en Orbenlle y en la granja de A Gándara, reflejando una removilización de la sílice debida también a intensos procesos de alteración química.

En la fig. 4.3 se han localizado las principales explotaciones de arcillas caoliníferas de este valle, que son las de la Granxa, Orbenlle, Covina, Cerquido-Casal y Guillarey. De ellas han sido estudiadas las situadas en Cerquido-Casal (mina Mercedes); en Orbenlle-Gándaras de Budiño (mina Juliesta) y en Cerquido-Casal (mina Rogelita).

Cuenca A Guarda-O Rosal-Tomiño

Cerca de la desembocadura del río Miño, aparecen depósitos aluviales cuaternarios que descansan sobre los gneises y granitos del SW de Pontevedra. Los depósitos están formados por una potente gravera, muy utilizada en la industria de la construcción, que puede alcanzar hasta 15 m. de potencia, y bajo la que existen bancos más o menos potentes y contínuos de arcillas caoliníferas.

Estas arcillas, en muchos casos, parecen el resultado de un transporte por solifluxión de materiales de alteración de las rocas graníticas o gneísicas próximas, o de sedimentos terciarios, mientras las gravas son los materiales transportados por el río Miño y sus afluentes en el dragado de las montañas circundantes.

En el área de A Guarda-O Rosal, las arcillas parecen haber sido arrastradas por solifluxión, conservándose a veces estructuras graníticas y pegmatíticas profundamente alteradas, que recuerdan aún a la roca madre.
En las laderas del monte Santa Tecla, especialmente al E y al W, aparecen depósitos cuaternarios coluviales formados por arenas, limos y arcillas.

Las principales explotaciones se encuentran en A Guarda, O Rosal y Tomiño. Las canteras estudiadas han sido las de Santa Tecla e Ignacia en A Guarda y la de Bernardino en O Rosal-Tomiño.

Área de Dena

En la parte S de la ensenada del Grove, aparecen unos depósitos arcillosos con alternancia de gravas y arenas, sobre granitos y granodioritas. Estos depósitos pueden alcanzar los 10-15 m. de potencia; en la base se sitúan las arcillas caoliníferas explotables con potencias variables.

Estos depósitos parecen el resultado del transporte de los materiales alterados de las granodioritas de la zona.

Se ha estudiado en este área el depósito Lourdes, en los términos de Ponte Dena y Meaño.

Área de A Estrada-Valga

Está situada en la parte NE de la provincia. Es una zona petrográficamente compleja constituida por rocas ultrabási- cas, que alternan con dioritas, dunitas y serpentinas, y por migmatitas y pegmatitas ricas en berilos.

Los granitos existentes en esta zona están muy alterados, pero con posibilidades muy dudosas de explotación.

Las arcillas se encuentran distribuidas sobre las diffé rentes rocas ígneas y metamórficas citadas.

La zona arcillosa de Valga, la de mayores posibilidades,
está situada a ambos lados de la carretera de Pontecesures a Vilagarcía y en ella se observa una alternancia de conglomerados con arcillas de colores crema a rojizas.

Se ha estudiado en este área, la cantera Ana, en el término de Ponte Valga.

Area de Nigrán

Está situada al E. de la ría de Baiona, sobre los granitos de dos micas, dominantes en toda la provincia. Los depósitos arcillo-caoliníferos están formados por una alternancia de gravas, arenas y en algunas ocasiones conglomerados. Hacia el muro es donde están concentrados los materiales caoliníferos explotados con potencias de 15-20 m. y carácter arenoso.

Se ha estudiado en este área, el depósito Nigranitas, en el término de Nigrán.

Area de Sanxenxo-O Grove

Este área está situada en la salida de la ría de Pontvedra, en la parte N, y asentada sobre los granitos de dos micas y granito porfídico con biotitas. Los depósitos de arcillas caoliníferas están formados por una alternancia de conglomerados y arenas, bajo las cuales está el granito calolinizado in situ. La potencia total de las arcillas y de la superficie granítica calolinizada es del orden de los 15 m.

Se han estudiado en este área los depósitos San Esteban, en Sanxenxo-A Toxa y San Esteban 2ª en la localidad de Noalla.
5.- **METODOS Y TECNICAS DE ESTUDIO**

Para actualizar los datos relativos a los yacimientos de caolín de Pontevedra, se han consultado las revistas que mayor información podrían darnos, entre ellas: Anales de Edafología y Fisiología Vegetal, Boletín del Instituto Geológico y Minero de España, Boletín de la Sociedad Española de Cerámica y Vidrio, Estudios Geológicos y las Memorias del Mapa Geológico de España a escala 1:50.000 y 1:200.000.

En cuanto a los datos económicos, se han utilizado entre otros los publicados anualmente por el Ministerio de Industria en su Estadística Minera de España y los consultados en la Delegación provincial de Minas de A Coruña.

Otras informaciones de carácter privado han sido proporcionadas por las mismas empresas explotadoras.

La labor de campo se ha realizado visitando toda el área de la provincia en donde existían yacimientos explotados o en donde pudiera haber posibilidades caoliníferas, de acuerdo con su geología básica.

Los afloramientos estudiados se han situado sobre las hojas correspondientes del M.T.N. a escala 1:50.000. En algunos se ha hecho un reconocimiento geológico del yacimiento y sus alrededores.

En cada yacimiento se han escogido un número variable de muestras, no sólo de la roca caolinífera sino de las rocas que genéticamente pueden estar relacionadas con ella. En los yacimientos de mayor interés económico y genético, la recogida ha sido más exhaustiva que en los restantes, para poseer así un cuadro más completo de todas sus características.
Los trabajos del laboratorio han consistido en:
- Separación de las fracciones de distintos tamaños de partícula.
- Análisis granulométrico.
- Análisis mineralógico.
- Análisis químico.
- Estudios sobre el comportamiento térmico.

La separación de fracciones se ha efectuado por sedimentación en medio acuoso según el método propuesto por A.D. HALL en 1.905. El método es aceptable para las partículas menores de 200 micras. Está basado en la ley de Stokes; sus limitaciones y errores han sido ampliamente discutidos por ALBAREDA y HOYOS (1.961) y CAILLERE y HENIN (1.963), entre otros.

Con este método se han separado las fracciones menores de 63, de 20 y de 2 micras, repitiendo dos veces el proceso para cada separación.

Para lograr una mayor dispersión de las partículas en el medio acuoso se utilizó como dispersante el preparado comercial "Calgón" cuya composición es la de un polimetafosfato sódico. Sólo se ha operado sin dispersante para la extracción de las fracciones destinadas al análisis químico, a fin de que no se alteraran los resultados.

La cantidad aproximada de dispersante fue de 10 cm3 por 100 gr. de muestra y litro de agua. La concentración del dispersante es de 45 gr. de Calgón por litro de agua.

El análisis granulométrico se ha realizado mediante "el método de la pipeta Robinson" utilizando como dispersante la solución de "Calgón" antes mencionada. Así se han obteni-
do los porcentajes de las fracciones menores de 63 micras, de la de 20 micras y de la menor de 2 micras. El tanto por ciento de las fracciones superiores a las 200 micras se obtuvo por tamizado y el de las comprendidas entre 63 y 200 micras por levigación.

La mineralogía ha sido estudiada por los siguientes métodos de estudio:

- Difracción de Rayos-X (DRX)
- Análisis Térmico Diferencial (DTA)
- Microscopía electrónica (ME)

La difracción de Rayos-X se efectuó en un aparato Philips modelo 1130-1050-1051, equipado con contador de centelleo y unidad discriminadora. Se utilizó la radiación Kα del cobre y filtro de Ni, trabajando a 25 mA y 35 Kv. La velocidad de exploración ha sido en todos los casos de 2°/minuto. La rendija utilizada ha sido de 0,1 mm., la constante de tiempo 2 seg. y la velocidad del papel de 80 cm/h.

Se obtuvieron difractogramas de polvo de todas las muestras de caolín, previamente homogeneizadas, molidas y tamizadas por el tamiz número 270 de la serie A.S.T.M. (tamaño partícula inferior a 53 micras). El campo de exploración fue de 2° a 70° para 2 θ. Con las fracciones menores de 63 micras, de 20 y de 2 micras se prepararon agregados orientados.

Cuando la identificación mineralógica lo hizo necesario, se trataron las muestras en agregado orientado con etilenglicol, según el método ya clásico de BRUNTON (1.955), pero manteniendo el contacto entre el agregado y el etilenglicol en fase vapor, durante 48 horas.
Para la identificación de fases se utilizaron fundamentalmente los números recopilados por BROWN (1.961) y THOREZ (1.975) para los minerales de la arcilla, y otros muchos trabajos específicos.

Se ha efectuado un cálculo semicuantitativo de los minerales mediante esta técnica utilizando para ello las intensidades de ciertas reflexiones (áreas) y los poderes reflectantes relativos de los mismos. La metodología utilizada ha sido propuesta por GALAN (1.972), basado en sus propios resultados y en los de SCHULTZ (1.964), MARTIN POZAS, MARTIN VIVALDI y RODRIGUEZ GALLEGO (1.969).

Para la determinación del politipo de la caolinita se ha usado el método de MURRAY y LYONS (1.956) y la terminología propuesta por GALAN y ESPINOSA (1.974).

Esta clasificación, algo artificiosa, pero útil para describir los diferentes politipos de caolinitas, se basa, lo mismo que lo hacen los autores anteriores, en la discusión que BRINDLEY y ROBINSON (1.946 y 1.947) hacen sobre la naturaleza del desorden en las caolinitas.

Un diagrama intermedio entre los de una caolinita tipo T y otra tipo pM, puede explicarse como una mezcla de cristales de ambos tipos o como un todo formado por cristales desordenados parcialmente. Por ello, cuando se hable de una caolinita tipo T parcialmente desordenada, puede tratarse de una caolinita como tal o de una mezcla de caolinita pM y T.

La cristalinidad de las caolinitas se ha determinado según el método de HINCKLEY (1.963) que consiste en medir las intensidades de las reflexiones (1\(\overline{1}0\)) y (1\(\overline{1}1\)) respecto a la
banda que aparece en el entorno de la reflexión (020), y establecer la relación siguiente: \(I_c = \frac{A + B}{A_t} \), donde A y B son las intensidades de las dos reflexiones anteriores y \(A_t \) la distancia entre el extremo de la reflexión (110) y la línea base antes de producirse la reflexión (020), (fig. 5.1).

El análisis térmico diferencial se efectuó en un equipo DELTATHERM M-2000 de la firma Technical Equipment Corporation. Se utilizó portamuestras de inconel, termopares de Cromel-alumel y velocidad de calentamiento de 10°C/minuto. Todas las experiencias fueron realizadas en atmósfera normal y las muestras, antes de su empaquetamiento en los pocillos, fueron diluídas al 50 % con alúmina calcinada. En todos los casos se trabajó con 0,17 gr. de muestra problema que fue, al igual que la alúmina, pasada por el tamiz nº 270 A.S.T.M. Por esta técnica se han analizado las fracciones < 20 micras de las muestras representativas de cada uno de los depósitos estudiados.

Para la identificación de los minerales del caolín y de los minerales acompañantes, minerales de la arcilla, hidróxidos de aluminio, cuarzo, etc., se han usado los datos aportados por MACKENZIE (1.957 y 1.970); GALAN y ESPINOSA (1.974) y SMYKALT-KLOSS (1.974).

En algunas de las muestras analizadas ha sido necesario el auxilio de la microscopía electrónica para identificar fases con mayor exactitud y para comprobar algunos de los resultados obtenidos anteriormente, especialmente en lo referente a la presencia de halloysita y metahalloysita, hidróxidos de aluminio y alofanas.

Las muestras en fracciones menores a 2 micras, fueron
INDICE DE CRISTALINIDAD = \frac{A + B}{A \cdot t}

ESQUEMA DE HINCKLEY

Fig. 5.1
dispersadas mediante ultrasonidos en agua destilada y preparadas por la técnica habitual para la visión directa. El equipo utilizado ha sido de la casa Philips, modelo E.M. 300.

Mediante el microscopio electrónico, se han observado cristalinidades y formas, se han reconocido fases mineralógicas y se han medido tamaños de partículas. El estudio se ha centrado principalmente en las kanditas y los resultados algunas veces han servido para la interpretación genética de las muestras.

El análisis químico se ha realizado empleando la técnica de absorción atómica para los siguientes cationes: Si, Al, Fe, Ti, Ca y Mg. Se han disuelto por medio de una disgregación alcalina, usando la mezcla CO₃Na₂, CO₃K₂. Se ha empleado cloruro de lantano para exaltar el nivel de absorción del Ca y del Al. En muestra aparte, se determinó el ión ferroso por medio de una disgregación ácida y posterior valoración permanganimétrica. Las aguas se han determinado por el método usual (GALAN y ESPINOSA, 1.974), calentando durante dos horas la muestra a 110 ºC para el cálculo del agua de hidratación, y posterior calcinación a 1.000 ºC, para el cálculo del agua constitucional.

Los cationes alcalinos Na y K se han determinado por fotometría de llama.

Con vistas a la posibilidad de utilización industrial de los materiales estudiados, se ha procedido a realizar los siguientes estudios para determinar su comportamiento térmico:

- Microscopía de calefacción, ensayos de cocción a dife-
rentes temperaturas, densidad aparente, capacidad de absorción de agua, porosidad abierta, estudio de la textura y dilatometría.

La microscopía de calefacción se ha realizado utilizando un fotomicroscopio II-A-P de la casa Leitz, capaz de alcanzar temperaturas del orden de 1.550 °C. Los ensayos se han realizado sobre probetas cilíndricas de 2 mm. de φ y 3 mm. de altura, obtenidas por prensado en seco de las muestras, utilizando en todos los casos la misma presión de prensado y siguiendo una curva de calentamiento de 7 °C/minuto. Mediante esta técnica se ha podido poner de manifiesto la contracción experimentada por las muestras durante la cocción así como determinar el comienzo de la sinterización y el punto de fusión.

Para el estudio de la constitución mineralógica y de las propiedades físicas de las muestras después de tratadas térmicamente a altas temperaturas, se ha procedido a realizar una serie de ensayos de cocción a las temperaturas de 1300°, 1400° y 1500°C, con tratamientos isotérmicos, a las máximas temperaturas indicadas, de 2 horas. Las muestras para estos ensayos fueron probetas prismáticas de 20 mm x 10 mm x 4 mm, obtenidas por prensado en seco, bajo una presión de 250 Kg/cm².

Sobre los materiales así obtenidos se estudió su constitución mineralógica mediante difracción de Rayos-X y en algunos casos mediante microscopía de luz reflejada y electrónica.

Las propiedades físicas: densidad aparente, capacidad de absorción de agua y porosidad abierta se determinaron si-
guiendo la norma UNE 61-033-75.

La textura de las piezas obtenidas después del tratamiento térmico se estudió mediante microscopía de luz reflejada. Para ello, las diferentes muestras se embebieron en una resina epoxi (ARALDIT MY 753 y endurecedor HY 951) de fraguado en frío para su ulterior pulido por las técnicas habituales.

El estudio dilatométrico se realizó mediante un dilatómetro NETZCH, de alta temperatura empleando para ello probetas cilíndricas de 50 mm. de longitud y 4 mm. de diámetro. En todos los casos la velocidad de calentamiento fue de 5 °C/minuto y la temperatura máxima alcanzada fue de 1.100 °C. Mediante esta técnica se ha podido determinar los porcentajes de dilatación, así como la presencia de cuarzo o cristobalita residual después de los tratamientos térmicos a alta temperatura.

6.- DEPOSITOS ESTUDIADOS

6.1.- CUENCA DE PORRIÑO-TUI

Descripción de yacimientos. Resultados experimentales

Los yacimientos estudiados dentro de esta importante cuenca sedimentaria han sido los de Mercedes, Julieta y Rogelita.

La mina Mercedes está situada en los términos de Cерquito-Casal a la derecha de la carretera Tui-Porriño y a unos 3 Km. de Tui. Las coordenadas geográficas medias son: 4º 55'45''W y 42º 06'15'' N. La masa caolinífera del yaci-
miento está formado por sedimentos miocenos.

La explotación actual se realiza a cielo abierto con un frente de unos 50 m. de potencia por otros tantos de amplitud. Se pueden distinguir en este frente ocho niveles diferentes recubiertos por unos 3 m. de conglomerados y arenas de diversos tamaños. Debajo de estos conglomerados, aparece un primer nivel arenoso de unos 2 m. de potencia, de color rosáceo y sin ningún tipo de conglomerados. A continuación y hacia el muro se puede observar unos 10 m. de arcilla de color crema. El tercer nivel, es muy parecido al anterior, con tonalidad más fuerte y 1 m. de potencia y pasa hacia el muro a arcillas más claras con unos 3 m. de potencia. El quinto nivel, de 10 m. de potencia, está constituido también por arcillas blanquecinas.

Por debajo de estas arcillas aparece una arcilla de color amarillento con 1 m. de potencia.

El séptimo nivel, de unos 3 m. de potencia, es una arena caolinífera de un color rosa fuerte y por último, sirviendo de base a todo el conjunto antes mencionado, podemos observar otro nivel de caolín rojizo, bastante puro y con unos 15 m. de potencia. (Fig. 6.1).

Para estudiar la mineralogía del yacimiento, se han escogido ocho muestras (MER-1 a MER-8) que se corresponden con cada uno de los niveles de la explotación.

En cuanto a la granulometría de los distintos materiales del yacimiento, se puede indicar (Tabla VI.1) que el nivel MER-1 es una arena, mientras que los niveles MER-2 y MER-6 son arcillosos bastante homogéneos granulométricamente, con un 60-85 % de arcilla. Los dos últimos niveles del yacimiento-
to son muy similares entre sí y con porcentaje, en fracción arcillosa, menores que los anteriores. Pueden considerarse como materiales arcillo-arenosos.

La tabla VI.2 recoge la composición mineralógica semi-cuantitativa de las distintas muestras estudiadas, obtenida mediante el estudio difractométrico. Los niveles 2 y 6 son arcillas caoliníferas, caolines que de forma natural contienen más del 80 % en kanditas, con cuarzo e illita (y ocasionalmente feldespatos) como principales impurezas. Las arenas caoliníferas (muestras MER-7 y MER-8) de la base contienen lógicamente menor proporción de kanditas y gran cantidad de cuarzo. Serían caolines propios para lavar, con un contenido en kanditas de un 30 %, pero son ricos en óxidos de hierro.

Las fracciones $< 20 \mu$ y $< 2 \mu$ (tabla VI.2) se enriquecen en kanditas, aunque lógicamente las muestras del conjunto intermedio (MER-2 a MER-6) muy ricas en minerales del caolín, sólo aumentan ligeramente la proporción de kanditas en detrimento del cuarzo y a veces de la illita. Pequeñas cantidades de clorita, parcialmente hinchable, pueden identificarse en las fracciones $< 20 \mu$. También se aprecia la presencia de interestratificados del tipo illita-montmorillonita.

Las muestras 1 y 8 son menos ricas en kanditas y presentan mayor proporción de illita, respecto al resto de los materiales del yacimiento.

Hay que hacer notar la presencia de cuarzo en cantidades apreciables ($\sim 5 \%$) aún en las fracciones $< 2 \mu$, lo que demuestra el pequeño tamaño de partícula en que se encuentra, debido sin duda al intenso proceso de meteorización a que
TABLA VI.1.- Mina MERCEDES. Análisis Granulométricos. (%)

<table>
<thead>
<tr>
<th>Fracción</th>
<th>MER-1</th>
<th>MER-2</th>
<th>MER-3</th>
<th>MER-4</th>
<th>MER-5</th>
<th>MER-6</th>
<th>MER-7</th>
<th>MER-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>7,08</td>
<td>65,83</td>
<td>70,40</td>
<td>60,23</td>
<td>74,30</td>
<td>62,44</td>
<td>35,24</td>
<td>40,53</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>2,10</td>
<td>14,70</td>
<td>13,65</td>
<td>19,05</td>
<td>11,90</td>
<td>17,20</td>
<td>13,65</td>
<td>10,85</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>2,05</td>
<td>9,75</td>
<td>11,30</td>
<td>13,-</td>
<td>7,55</td>
<td>7,-</td>
<td>7,20</td>
<td>16,70</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>1,10</td>
<td>0,20</td>
<td>1,55</td>
<td>5,95</td>
<td>2,60</td>
<td>10,30</td>
<td>19,90</td>
<td>14,80</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>5,51</td>
<td>8,11</td>
<td>2,50</td>
<td>0,24</td>
<td>3,15</td>
<td>0,55</td>
<td>15,91</td>
<td>8,55</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>82,60</td>
<td>1,55</td>
<td>1,47</td>
<td>1,09</td>
<td>1,12</td>
<td>3,30</td>
<td>8,70</td>
<td>8,48</td>
</tr>
<tr>
<td></td>
<td>100,44</td>
<td>100,14</td>
<td>100,87</td>
<td>99,56</td>
<td>100,62</td>
<td>100,79</td>
<td>100,60</td>
<td>99,91</td>
</tr>
</tbody>
</table>
TABLA VI.2. - Mina MERCEDES. Composición mineralógica del caolín. (%)

<table>
<thead>
<tr>
<th>Muestra total</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER-1</td>
<td>85</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MER-2</td>
<td>10</td>
<td>--</td>
<td>90</td>
<td>ind.</td>
</tr>
<tr>
<td>MER-3</td>
<td>10</td>
<td>--</td>
<td>90</td>
<td>ind.</td>
</tr>
<tr>
<td>MER-4</td>
<td>5</td>
<td>10</td>
<td>85</td>
<td>ind.</td>
</tr>
<tr>
<td>MER-5</td>
<td>5</td>
<td>< 5</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>MER-6</td>
<td>10</td>
<td>5</td>
<td>85</td>
<td>--</td>
</tr>
<tr>
<td>MER-7</td>
<td>15</td>
<td>25</td>
<td>60</td>
<td>--</td>
</tr>
<tr>
<td>MER-8</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER-1</td>
<td>10</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>MER-2</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>MER-3</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>MER-4</td>
<td>10</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>MER-5</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>MER-6</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>MER-7</td>
<td>10</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>MER-8</td>
<td>15</td>
<td>10</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER-1</td>
<td>5</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>MER-2</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
</tr>
<tr>
<td>MER-3</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
</tr>
<tr>
<td>MER-4</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>MER-5</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
</tr>
<tr>
<td>MER-6</td>
<td>5</td>
<td>ind.</td>
<td>95</td>
</tr>
<tr>
<td>MER-7</td>
<td>5</td>
<td>ind.</td>
<td>95</td>
</tr>
<tr>
<td>MER-8</td>
<td>5</td>
<td>10</td>
<td>85</td>
</tr>
</tbody>
</table>

Q = Cuarzo; M = Micas; K = Kanditas; F = Grupo de feldespatos
ind. = indicios
TABLA VI.3.- Mina MERCEDES. Análisis Químico.

(MER-5. Total)

\[\begin{align*}
\text{SiO}_2 & \quad 46,03 \% \\
\text{Al}_2\text{O}_3 & \quad 36,76 \% \\
\text{Fe}_2\text{O}_3 & \quad 1,78 \% \\
\text{FeO} & \quad 0,17 \% \\
\text{TiO}_2 & \quad 1,07 \% \\
\text{MgO} & \quad 0,5 \% \\
\text{MnO} & \quad 0,05 \% \\
\text{CaO} & \quad 0,10 \% \\
\text{Na}_2\text{O} & \quad 0,10 \% \\
\text{K}_2\text{O} & \quad 0,98 \% \\
\text{Perd. 1.000 °C} & \quad 12,12 \% \\
\end{align*} \]

\[99,66 \% \]
fueron sometidos estos materiales.

En el comportamiento térmico de este material a alta temperatura influye decisivamente la presencia de este cuarzo microcristalino, formándose cristobalita a temperaturas inferiores a lo normal (Véase capítulo 7, apartado 7).

Mediante el análisis químico realizado sobre la fracción total (tabla VI.3) se puede observar que es un caolín bastante bueno, con una relación sílice-alúmina de un 1,25 muy próxima a la teórica; un contenido en hierro inferior al 2%, un 1 % de álcalis y una pérdida de agua superior al 12 %. Sin embargo el contenido en TiO₂ es relativamente alto.

Este nivel, excepto por el contenido en hierro, puede considerarse como un caolín de alta calidad. Este hierro probablemente proceda de la oxidación de menas sulfuradas.

La mina Julieta forma parte de la concesión "Cerámica Celousa" y se encuentra situada en los términos de Orbenlle-Gándaras de Budiño, a la izquierda de la carretera dirección Tui-Porriño; las coordenadas geográficas medias son: 4º 56'24'' W y 42º 07'50'' N. Al igual que los otros yacimientos de esta cuenca, la masa caolinífera está formada por sedimentos miocenos.

La explotación se realiza a cielo abierto con unos 15 m. de potencia y unos 40 m. de extensión. El nivel edáfico, de medio metro de potencia, esta formado por un humus, muy rico en materia orgánica.

En la parte inferior de este nivel, nos encontramos con una capa arenosa de tonalidades claras con unos 3 m. de potencia.

Debajo de este nivel y hacia el muro, aparece una capa
CORTE DE LA EXPLOTACION DE JULIETA Y
SITUACION DE LAS MUESTRAS ESTUDIADAS

Fig. 6.2
de caolín blanco y unos 3 m. de espesor.

A continuación, otro nivel de un caolín blanco-grísáceo, de unos 2 m. Un tercer nivel, de caolín blanco-cremoso de metro y medio de potencia.

Nos encontramos seguidamente, un nivel caolinífero, de tonalidades rosáceas y de unos 4 m. de potencia y por último sirviendo de base a todo el conjunto anteriormente citado un nivel muy semejante al anterior, de caolín rojizo con unos 2 m. de potencia. (Fig. 6.2).

Para el estudio mineralógico del yacimiento, se han tomado cinco muestras (JUL-1 a JUL-2), correspondientes a cada uno de los niveles en explotación.

En relación a la granulometría, de los diversos materiales del yacimiento, podemos indicar (Tabla VI.4), que todos los niveles son bastante homogéneos granulométricamente, con un 40-55 % de arcilla. Pueden considerarse como materiales arcillo-arenosos.

En la tabla VI.5, se puede observar la composición mineralógica semicuantitativa de las muestras estudiadas. Los niveles 1-3 y 5 son arcillas caoliníferas, con más de 70 % de kanditas en forma natural, con cuarzo, illita, montmorillonita y feldespatos como impurezas. Los niveles 2 y 4 tienen mucha menor proporción de kanditas y mayor cantidad de cuarzo que las anteriores.

En cuanto a las fracciones < 20 μ y < 2 μ, todos los niveles son muy ricos en minerales del caolín y aumentan la proporción de kanditas, disminuyendo la de cuarzo, fundamentalmente. Este cuarzo no es tan fino como los encontrados en los materiales de las minas Rogelita y Mercedes. Las
<table>
<thead>
<tr>
<th>Fracción</th>
<th>JUL-1</th>
<th>JUL-2</th>
<th>JUL-3</th>
<th>JUL-4</th>
<th>JUL-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>43,83</td>
<td>35,39</td>
<td>37,13</td>
<td>51,29</td>
<td>29,23</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>12,65</td>
<td>10,80</td>
<td>14,75</td>
<td>6,10</td>
<td>11,05</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>7,80</td>
<td>12,35</td>
<td>12,75</td>
<td>4,65</td>
<td>12,65</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>7,70</td>
<td>20,65</td>
<td>16,65</td>
<td>8,60</td>
<td>17,70</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>7,70</td>
<td>19,25</td>
<td>1,17</td>
<td>11,22</td>
<td>26,63</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>20,30</td>
<td>1,20</td>
<td>17,45</td>
<td>17,35</td>
<td>3,10</td>
</tr>
</tbody>
</table>

99,98 99,64 99,90 99,21 100,36
<table>
<thead>
<tr>
<th>Muestra total</th>
<th>Q</th>
<th>M</th>
<th>Mo</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUL-1</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
<td>ind.</td>
</tr>
<tr>
<td>JUL-2</td>
<td>35</td>
<td>15</td>
<td>5</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>JUL-3</td>
<td>< 5</td>
<td>5</td>
<td>10</td>
<td>80</td>
<td>< 5</td>
</tr>
<tr>
<td>JUL-4</td>
<td>60</td>
<td>10</td>
<td>5</td>
<td>25</td>
<td>ind.</td>
</tr>
<tr>
<td>JUL-5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>75</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUL-1</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>JUL-2</td>
<td>5</td>
<td>10</td>
<td>85</td>
<td>-</td>
</tr>
<tr>
<td>JUL-3</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>JUL-4</td>
<td>5</td>
<td>10</td>
<td>85</td>
<td>-</td>
</tr>
<tr>
<td>JUL-5</td>
<td>5</td>
<td>10</td>
<td>85</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUL-1</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
</tr>
<tr>
<td>JUL-2</td>
<td>ind.</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>JUL-3</td>
<td>ind.</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>JUL-4</td>
<td>ind.</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>JUL-5</td>
<td>5</td>
<td>-</td>
<td>95</td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; Mo = Esmectitas
F = Grupo de feldespatos; ind. = indicios
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>< 20 μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SiO}_2)</td>
<td>58,06</td>
<td>45,70</td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3)</td>
<td>27,37</td>
<td>37,25</td>
</tr>
<tr>
<td>(\text{Fe}_2\text{O}_3)</td>
<td>0,78</td>
<td>0,76</td>
</tr>
<tr>
<td>(\text{FeO})</td>
<td>0,34</td>
<td>0,22</td>
</tr>
<tr>
<td>(\text{TiO}_2)</td>
<td>1,29</td>
<td>1,15</td>
</tr>
<tr>
<td>(\text{MgO})</td>
<td>0,19</td>
<td>1,56</td>
</tr>
<tr>
<td>(\text{MnO})</td>
<td>< 0,05</td>
<td>< 0,05</td>
</tr>
<tr>
<td>(\text{CaO})</td>
<td>0,09</td>
<td>0,10</td>
</tr>
<tr>
<td>(\text{Na}_2\text{O})</td>
<td>0,15</td>
<td>0,45</td>
</tr>
<tr>
<td>(\text{K}_2\text{O})</td>
<td>1,31</td>
<td>1,18</td>
</tr>
<tr>
<td>Perd. 1.000 °C</td>
<td>8,52</td>
<td>12,10</td>
</tr>
</tbody>
</table>

98,15 100,52
muestras naturales contienen más cuarzo que en las otras minas y es de mayor tamaño, existiendo menor cantidad de finos (apenas existe cuarzo en la fracción $< 2\mu$). Esto podría interpretarse como que los materiales de este yacimiento han sido menos alterados que los correspondientes a las minas estudiadas anteriormente. Probablemente son niveles más bajos estratigráficamente (más antiguos) y proceden de los primeros desmantelamientos de las áreas graníticas (rocas madres) cercanas, todavía en etapas iniciales de alteración meteórica.

Esta hipótesis está también avalada por las diferencias cristalinoquímicas entre las kanditas de los distintos depósitos (pág. 51).

Según este esquema, posiblemente pueden encontrarse niveles semejantes a los de esta mina, en la base de las explotaciones Rogelita y Mercedes.

En los análisis químicos realizados sobre la muestra JUL-2 (Tabla VI.6) se puede observar que existe una marcada diferencia entre el material bruto y la fracción menor de 20μ, lo que no suele ser muy común en este tipo de arcillas caoliníferas. Prácticamente las diferencias se manifiestan en la relación $\text{SiO}_2 / \text{Al}_2\text{O}_3$ debido a la existencia fundamental de sílice libre en el material bruto, cuyo porcentaje varía de un 35 a un 5 % en la fracción $< 20 \mu$. Los demás porcentajes de hierro, titanio, álcalis, etc. permanecen constantes, puesto que son debidos a minerales de la arcilla y óxidos presentes tanto en el material bruto como en su fracción fina.

La mina Rogelita, está también situada en los términos
de Cerquido-Casal, a la derecha de la carretera Tui-Porriño y a continuación de la mina Mercedes. Las coordenadas geográficas medias son 44°55'45'' W y 42°06'25'' N. Como los otros yacimientos de esta cuenca, la masa caolinífera también está formada por sedimentos miocenos.

La explotación en la actualidad se realiza a cielo abierto con un frente de 10-12 m. de potencia por unos 30-40 m. de amplitud. Para el estudio del yacimiento hemos considerado dos frentes de explotación uno que denominamos corte (1) y el otro corte (2). En el corte (1), se pueden distinguir tres niveles diferentes, recubiertos por unas arenas caoliníferas de medio metro de potencia. Debajo de estas arenas caoliníferas, aparece un primer nivel de un caolín blanco-cremoso de unos 4 m. de potencia. A continuación y hacia el muro, nos encontramos un caolín impregnado de lignito, de color negro, de 1 m. de potencia y por último, sirviendo de base a todo el conjunto anterior, observamos otro nivel de caolín blanco-grisáceo, de unos 3 m. de potencia. En el corte (2), que se encuentra situado enfrente del anterior, podemos considerar cuatro niveles bien diferenciados, encima de los cuales aparece una capa vegetal formada por conglomerados y arenas de 1 m. de espesor. A continuación, y hacia el muro, aparece un primer nivel de caolín blanco-amarillento con algunas incrustaciones de cuarzo, algo arenoso y óxidos de hierro, con unos 5 m. de potencia. Un segundo nivel, también formado por caolín amarillento, casi sin cuarzo y prácticamente sin arenas de un metro y medio de potencia aproximadamente. Por debajo de este caolín aparece otra capa caolinífera de un color gris oscuro, muy puro también de unos 2 m. de poten
CORTES DE LA EXPLOTACION DE ROGELITA Y SITUACION DE LAS MUESTRAS ESTUDIADAS

Corte 1

Corte 2

1 m

Fig. 6.3
cia y por último, un cuarto tramo, formado por un caolín rojo-grisáceo con vetas color crema, muy parecido al anterior en cuanto a pureza y de unos 2 m. de potencia también. (Fig. 6.3)

Para el estudio mineralógico del yacimiento, en el corte (1) hemos escogido tres muestras (ROG-1 a ROG-3) y para el corte (2), cuatro muestras (ROG-1 a ROG-4) que vienen a corresponderse con cada uno de los niveles del yacimiento.

En cuanto a la granulometría, de los distintos materiales del yacimiento, para el corte (1), podemos indicar (Tabla VI.7) que los tres niveles son prácticamente muy similares granulométricamente, con porcentajes de arcillas de 60-80 %. El nivel ROG-2, que es el que corresponde a la turba, tiene mayor porcentaje en arena que los otros dos. Para el corte (2), se puede indicar, que el nivel ROG-1 tiene un porcentaje de arenas superior a los restantes y por tanto menor proporción en arcillas también. Los otros tres niveles, son muy homogéneos en cuanto a fracción arcillosa, con unos porcentajes de 70-80 %.

La composición mineralógica semicuantitativa, de las muestras estudiadas en el corte (1) (Tabla VI.8) indica que se trata de arcillas caoliníferas, caolines que de forma natural contienen más del 75 % en kanditas, con cuarzo e illitas como principales impurezas. En el corte (2) (Tabla VI.9) se puede apreciar, que los niveles 2-3 y 4 son muy homogéneos en cuanto a la proporción de kanditas con 80 % para las muestras naturales, mientras que la ROG-1, tiene un porcentaje en kanditas del 45 % y por tanto mayor proporción de cuarzo que las otras.

Las fracciones < 20μ y < 2μ, se enriquecen en kandi-
Corte 1

<table>
<thead>
<tr>
<th>Fracción</th>
<th>ROG-1</th>
<th>ROG-2</th>
<th>ROG-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 (\mu)</td>
<td>46,(-)</td>
<td>52,10</td>
<td>65,(-)</td>
</tr>
<tr>
<td>2-6,3 (\mu)</td>
<td>12,30</td>
<td>11,25</td>
<td>14,15</td>
</tr>
<tr>
<td>6,3-20 (\mu)</td>
<td>12,65</td>
<td>7,30</td>
<td>8,70</td>
</tr>
<tr>
<td>20-63 (\mu)</td>
<td>19,20</td>
<td>6,10</td>
<td>3,60</td>
</tr>
<tr>
<td>63-200 (\mu)</td>
<td>7,20</td>
<td>0,30</td>
<td>3,68</td>
</tr>
<tr>
<td>> 200 (\mu)</td>
<td>2,20</td>
<td>22,(-)</td>
<td>4,(-)</td>
</tr>
<tr>
<td>(\text{Total})</td>
<td>99,95</td>
<td>99,05</td>
<td>99,13</td>
</tr>
</tbody>
</table>

Corte 2

<table>
<thead>
<tr>
<th>Fracción</th>
<th>ROG-1</th>
<th>ROG-2</th>
<th>ROG-3</th>
<th>ROG-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 (\mu)</td>
<td>45,94</td>
<td>60,94</td>
<td>59,14</td>
<td>57,40</td>
</tr>
<tr>
<td>2-6,3 (\mu)</td>
<td>11,95</td>
<td>20,70</td>
<td>15,60</td>
<td>16,10</td>
</tr>
<tr>
<td>6,3-20 (\mu)</td>
<td>4,05</td>
<td>10,05</td>
<td>6,45</td>
<td>8,65</td>
</tr>
<tr>
<td>20-63 (\mu)</td>
<td>7,75</td>
<td>8,70</td>
<td>12,85</td>
<td>8,35</td>
</tr>
<tr>
<td>63-200 (\mu)</td>
<td>0,45</td>
<td>0,20</td>
<td>2,57</td>
<td>0,45</td>
</tr>
<tr>
<td>> 200 (\mu)</td>
<td>30,85</td>
<td>0,25</td>
<td>4,03</td>
<td>8,70</td>
</tr>
<tr>
<td>(\text{Total})</td>
<td>100,99</td>
<td>100,84</td>
<td>100,64</td>
<td>99,65</td>
</tr>
<tr>
<td>Muestra total</td>
<td>Q</td>
<td>M</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>ROG-1</td>
<td>10</td>
<td>15</td>
<td>75</td>
<td>ind.</td>
</tr>
<tr>
<td>ROG-2</td>
<td>5</td>
<td>10</td>
<td>85</td>
<td>-</td>
</tr>
<tr>
<td>ROG-3</td>
<td>5</td>
<td>20</td>
<td>75</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROG-1</td>
<td>5</td>
<td>5</td>
<td>90</td>
<td>ind.</td>
</tr>
<tr>
<td>ROG-2</td>
<td>5</td>
<td>5</td>
<td>90</td>
<td>ind.</td>
</tr>
<tr>
<td>ROG-3</td>
<td>5</td>
<td>5</td>
<td>90</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2 μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROG-1</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
</tr>
<tr>
<td>ROG-2</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
</tr>
<tr>
<td>ROG-3</td>
<td>< 5</td>
<td>< 5</td>
<td>95</td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; F = Grupo de feldespatos
Cl = Cloritas; ind. = indicios
<table>
<thead>
<tr>
<th>Muestra total</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROG-1</td>
<td>40</td>
<td>15</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>ROG-2</td>
<td>5</td>
<td>15</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>ROG-3</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td>ind.</td>
</tr>
<tr>
<td>ROG-4</td>
<td>5</td>
<td>15</td>
<td>80</td>
<td><5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROG-1</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>-</td>
<td>ind.</td>
</tr>
<tr>
<td>ROG-2</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ROG-3</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>-</td>
<td>ind.</td>
</tr>
<tr>
<td>ROG-4</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>ind.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2 μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROG-1</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ROG-2</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ROG-3</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>-</td>
<td>ind.</td>
</tr>
<tr>
<td>ROG-4</td>
<td><5</td>
<td><5</td>
<td>95</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; F = Grupo de feldespatos
ind. = Indicios; Cl = Cloritas
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>≤20μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>45,75</td>
<td>45,50</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>37,87</td>
<td>38,57</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0,87</td>
<td>0,49</td>
</tr>
<tr>
<td>FeO</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,79</td>
<td>0,60</td>
</tr>
<tr>
<td>MgO</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0,11</td>
<td>0,42</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,30</td>
<td>0,02</td>
</tr>
<tr>
<td>K₂O</td>
<td>0,65</td>
<td>0,50</td>
</tr>
<tr>
<td>Perd. 1.000 °C</td>
<td>13,20</td>
<td>13,51</td>
</tr>
</tbody>
</table>

100,20 99,61
tas, lo mismo en el corte (1) que en el (2), con porcentajes de hasta un 95% de minerales de caolín, en detrimento del cuarzo y de la illita. Hay pequeñas cantidades de clorita, que pueden identificarse en las fracciones < 20 μ.

Como ocurre en los materiales estudiados en la mina Mercedes también aparece cuarzo de muy pequeño tamaño en las fracciones finas, por las mismas causas de alteraciones meteoricas intensas y que tendrán una incidencia positiva en la formación de cristobalita a relativamente bajas temperaturas, cuando sean sometidas a un tratamiento térmico.

El análisis químico se ha realizado sobre las muestras ROG-2 del corte (2) (fracción total y < 20 μ). Podemos apreciar a la vista de la tabla VI.10 que existe un gran parecido entre la fracción total y la < 20 μ, especialmente para la sílice, la alúmina y pérdida por calcinación. Se observa también que la relación sílice-alúmina es aproximadamente de 1,20, composición muy próxima a la teórica de un caolín. Es de destacar, así mismo, el bajo contenido de hierro y álcalis, no llegando al 1% en ninguno de los dos casos. Por tanto podemos considerar el caolín de este depósito como de muy alta calidad.

Características cristaloquímicas de las kanditas.

En la tabla VI.11 se han recopilado los datos más significativos del comportamiento térmico (endotérmico principal y la razón de pendientes) de los caolines de los tres depósitos estudiados, el índice de cristalinidad (índice Hinkley), tamaño y formas de las partículas y grado de ordenación de los politipos encontrados.
<table>
<thead>
<tr>
<th>Muestra</th>
<th>T °C endotérmico principal</th>
<th>Rp.</th>
<th>IH</th>
<th>Tamaño y forma partícula (M.E.)</th>
<th>Grado de orden (1)</th>
<th>Grado de orden (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER-5</td>
<td>580</td>
<td>2,2</td>
<td>0,3</td>
<td>0,15-0,35 μ<sub>SH</sub></td>
<td>0,5-1 μ</td>
<td>pM</td>
</tr>
<tr>
<td>JUL-3</td>
<td>582</td>
<td>2,1</td>
<td>0,8</td>
<td>0,1 -0,3 μ<sub>pH</sub></td>
<td></td>
<td>pM</td>
</tr>
<tr>
<td>ROG-3 (corte 1)</td>
<td>578</td>
<td>1,9</td>
<td>0,4</td>
<td>≈0,1 -0,2 μ<sub>SR</sub></td>
<td>0,5-2 μ</td>
<td>pM</td>
</tr>
<tr>
<td>ROG-2 (corte 2)</td>
<td>580</td>
<td>2,0</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rp = Razón pendientes end. principal

IH = Indice de Hinckley

SH = Subhexagonal

pH = Pseudohexagonal

SR = Subredondeados

(1) según BRAMAO et al. (1.952)

(2) según MURRAY y LYON (1.956) y utilizando la terminología de GALAN y ESPIÑOSA (1.974)
Atendiendo al criterio BRAMAO y col. (1.952) las caolinitas analizadas tienen un comportamiento térmico similar al de las caolinitas desordenadas tipo pM, fig. 6.4 ya que la temperatura de descomposición es relativamente baja (aproximadamente 580 °C) y la razón de pendientes alta (aproximadamente 2), lo que indica una asimetría en el endotérmico principal provocada por una descomposición lenta al principio y busca al final, típicas de caolinitas desordenadas o de una mezcla de metahalloysita y caolinita desordenada.

 Mediante el microscopio electrónico (fig. 6.5 - 6.7), se han podido medir los tamaños máximos y mínimos de las caolinitas. Estas oscilan entre 0,1-0,35 μ sin grandes diferencias entre los distintos yacimientos. La forma de los cristales sí es sensiblemente variable; así, mientras en la mina Julieta es predominantemente seudohexagonal, en las otras dos predominan las formas redondeadas o subhexagonales.

 También es interesante observar la escasez de halloysita en "Julieta", frente a los altos contenidos de esta kandita en las otras dos minas, especialmente en "Mercedes".

 La presencia de halloysita (metahalloysita) se manifiesta además en el comportamiento de estos caolines ante los rayos-X. El índice de Hinckley, sólo es representativo de la caolinita, en las muestras de la mina Julieta, donde apenas puede quedar enmascarado por la presencia de halloysita. Este índice es de 0,8, propio de una caolinita parcialmente desordenada, según el eje b/3. Por el contrario, la presencia de halloysita en los otros caolines falsean el índice
Fig. 6.4
Fig. 6.5.
Microfotografía de la muestra MER-5. Caolinitas y halloysitas.

Fig. 6.6.
Microfotografía de la muestra JUL-3. Micas y caolinitas.

Fig. 6.7.
Microfotografía de la muestra ROG-1. Caolinitas y halloysitas.
de cristalinidad, dando valores más bajos (incluso hasta 0,3) y variando el politipo aparentemente desde un Tpd (Triclinídoc parcialmente desordenado) que es el correspondiente a la mina Julieta, hasta un PMpo (seudomonoclínico parcialmente ordenado) en la mina Mercedes.

Desde el punto de vista cristalquímico, es evidente que existe una mayor madurez en las kanditas de la mina Julieta, ya que se encuentran más evolucionadas.

Este hecho está de acuerdo con lo observado en el apartado anterior (6.1), en relación con la mayor antigüedad de los niveles explotados en la mina Julieta, que deben encontrarse así estratigráficamente más bajos.

6.2.- CUENCA DE A GUARDA – O ROSAL – TOMIÑO

Descripción de los yacimientos. Resultados experimentales

El yacimiento de Santa Tecla forma parte de la concesión "Cerámica de Santa Tecla" y se encuentra localizado en el término municipal de A Guarda (Fig. 6.8) al W del monte Santa Tecla, en los parajes denominados Camposancos y Bajos del Monte Santa Tecla. Las coordenadas geográficas medias son: 5º51'20'' W y 41º53'20'' N. El acceso a la concesión se puede hacer por el camino de A Guarda a Camposancos, estando la explotación a 2,1 Km. de A Guarda.

La masa caolinífera existente en el yacimiento está constituida por sedimentos cuaternarios (LOPEZ DE AZCONA y
SITUACION DEL YACIMIENTO DE SANTA TECLA
CORTE DE LA EXPLOTACION DE SANTA TECLA Y SITUACION DE LAS MUESTRAS ESTUDIADAS

ST-1
ST-2
ST-3
ST-4
ST-5

ARENAS Y CONGLOMERADOS
GRANITO CAOLINIZADO
LIMO ARCILLOSO

Fig. 6.9
col. 1.956) y materiales alterados de los granitos biotíticos-moscovíticos del W de Pontevedra.

Estos sedimentos cuaternarios se encuentran muy próximos a su área fuente, y se da el caso de que descansan sobre los granitos (alterados in situ) que le han servido de área fuente.

La explotación actual es a cielo abierto, con unos 15 m. de potencia y unos 60 m. de extensión. El nivel edáfico, de un metro escaso de potencia, se presenta como un material arenoso de color crema, en cuya masa se observan bloques de tamaños variables (10-20 cm.) con aspecto de conglomerados silíceos.

En la parte inferior de este nivel, se encuentra otra capa también arenosa algo más blanca, con tonos grises, que recuerdan a un granito descompuesto. La potencia de este nivel puede estimarse en unos 3 m.

En el muro aparece otro nivel de 2,5 m. de potencia, parecido al primero, de tonos más claros y sin conglomerados silíceos.

El cuarto nivel observable, es de color blanco, con unos 6 m. de potencia y es la base de la explotación caolinífera. Es similar a un granito descompuesto muy caolinizado.

Por último un quinto nivel, de unos 3 m. de potencia, de color gris oscuro y aspecto limoso, sirve de base a todo el conjunto antes descrito. Entre los cuatro niveles anteriores no existe solución de continuidad y entre este conjunto y el quinto nivel sí se observa una clara discontinuidad. (Fig. 6.9).

Para el estudio mineralógico se han escogido cinco mue-
tras (ST-1 a ST-5) que corresponden a cada uno de los niveles diferenciados en la explotación.

Desde el punto de vista **granulométrico** (Tabla VI.12), los niveles ST₁ a ST₄ deben considerarse como arenas arcillosas, aunque el nivel edáfico es algo más pobre en fracción arcilla (< 2 μ), mientras que los niveles ST₂, ST₃ y ST₄ son muy homogéneos granulométricamente, con ≈ 25 % de arcilla. La muestra ST₅ representa a un nivel que puede definirse como limo-arenó-arcilloso.

El análisis mineralógico semicuantitativo por difracción de Rayos-X se recoge en la tabla VI.13 (muestras naturales y fracciones < 20 μ y < 2 μ).

Como puede observarse, el caolín bruto está constituído por cuarzo, kanditas y micas, fundamentalmente. Los feldespatos son muy escasos y sólo están presentes en cantidades notables en los niveles 1 y 5 que son los menos caoliníferos. El contenido medio de kanditas, en los niveles 2 a 4, es del 40-50 %. Las micas son muy abundantes y sus porcentajes inversos, en general, a los de las kanditas. Aparece gibbsita en pequeñas proporciones (< 10 %), hasta el punto de que su presencia en las muestras ST-4 y ST-5 < 2 μ (≤ 5%) es evidente sólo por ATD.

Las fracciones finas se enriquecen como es natural en minerales del caolín, mientras se empobrecen en cuarzo, feldespatos y micas. Como excepción, hay una gran acumulación de micas en la fracción < 20 μ de la muestra ST-3, en detrimento de su contenido en kanditas. Indicios de esmectitas y de cloritas se observan en varias de estas fracciones finas. El contenido medio en minerales del caolín de los nive-
TABLA VI.12.- **Análisis Granulométrico del caolín de Santa Tecla. (%)**

<table>
<thead>
<tr>
<th>Fracción</th>
<th>ST-1</th>
<th>ST-2</th>
<th>ST-3</th>
<th>ST-4</th>
<th>ST-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>11,50</td>
<td>25,18</td>
<td>25,98</td>
<td>27,75</td>
<td>11,50</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>3,75</td>
<td>8,25</td>
<td>5,05</td>
<td>10,90</td>
<td>10,30</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>11,85</td>
<td>14,5</td>
<td>5,40</td>
<td>12,50</td>
<td>23,90</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>12,60</td>
<td>8,00</td>
<td>4,60</td>
<td>7,60</td>
<td>30,20</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>4,40</td>
<td>10,00</td>
<td>15,40</td>
<td>7,50</td>
<td>13,50</td>
</tr>
</tbody>
</table>

> 200 μ

99,1 93,93 99,43 99,25 99,9
<table>
<thead>
<tr>
<th>Muestra total</th>
<th>Q</th>
<th>F</th>
<th><10</th>
<th>50</th>
<th>5</th>
<th>5</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1</td>
<td>25</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-2</td>
<td>20</td>
<td>--</td>
<td>55</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-3</td>
<td>30</td>
<td>5</td>
<td>45</td>
<td>10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-4</td>
<td>35</td>
<td>--</td>
<td>40</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-5</td>
<td>30</td>
<td>10</td>
<td>15</td>
<td>40</td>
<td><5</td>
<td><5</td>
<td>Cl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 μ</th>
<th>Q</th>
<th>F</th>
<th>K</th>
<th>M</th>
<th>G</th>
<th>Mo</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1</td>
<td>20</td>
<td>--</td>
<td>30</td>
<td>45</td>
<td><5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ST-2</td>
<td>ind.</td>
<td>--</td>
<td>85</td>
<td>15</td>
<td>--</td>
<td>ind.</td>
<td>ind.</td>
</tr>
<tr>
<td>ST-3</td>
<td><10</td>
<td>--</td>
<td>40</td>
<td>45</td>
<td><10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ST-4</td>
<td>ind.</td>
<td>--</td>
<td>85</td>
<td>15</td>
<td>--</td>
<td>ind.</td>
<td>--</td>
</tr>
<tr>
<td>ST-5</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>35</td>
<td>5</td>
<td>ind.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2 μ</th>
<th>Q</th>
<th>F</th>
<th>K</th>
<th>M</th>
<th>G</th>
<th>Mo</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>15</td>
<td>15</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ST-2</td>
<td>--</td>
<td>--</td>
<td>95</td>
<td><5</td>
<td>--</td>
<td>ind.</td>
<td>ind.</td>
</tr>
<tr>
<td>ST-3</td>
<td>--</td>
<td>--</td>
<td>85</td>
<td>ind.</td>
<td>15</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ST-4</td>
<td>ind.</td>
<td>--</td>
<td>95</td>
<td>ind.</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ST-5</td>
<td><5</td>
<td><5</td>
<td>40</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
</tbody>
</table>

Q = Cuarzo; F = Grupo de feldespatos; K = Kanditas; M = Micas
G = Gibsita; Cl = Clorita; Mo = Esmectitas; ind. = indicios.
TABLA VI.14. - Mina SANTA TECLA. Análisis Químico. (%)

Muestra ST-4

<table>
<thead>
<tr>
<th>Material</th>
<th>< 63 μm</th>
<th>< 20 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48,70</td>
<td>45,90</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>36,67</td>
<td>36,67</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0,34</td>
<td>0,41</td>
</tr>
<tr>
<td>FeO</td>
<td>0,34</td>
<td>0,32</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,08</td>
<td>0,11</td>
</tr>
<tr>
<td>MgO</td>
<td>0,51</td>
<td>0,81</td>
</tr>
<tr>
<td>CaO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,15</td>
<td>0,20</td>
</tr>
<tr>
<td>K₂O</td>
<td>0,96</td>
<td>0,81</td>
</tr>
<tr>
<td>Perd. 1.000 ºC</td>
<td>11,91</td>
<td>14,36</td>
</tr>
</tbody>
</table>

| | 99,66 | 99,59 |

79
les caolíníferos más ricos (nivel ST-2 a ST-4) es de 80 y 90 % para las fracciones < 20 µ y < 2 µ, respectivamente.

La presencia de gibsita coincide en general, con un decrecimiento del porcentaje de kanditas, más evidente en las fracciones finas.

El cuarzo es generalmente de tamaño más grosero que el de la Cuenca de Porriño-Tui no apareciendo en las fracciones < 2 µ.

Las curvas termodiferenciales confirman la presencia de kanditas y de gibsita (endotérmicos a 300 ºC) en las muestras ST-1 y ST-3.

Los análisis químicos de las fracciones < 63 y < 20 µ de la muestra ST-4 (Tabla VI.14) son muy similares y corresponden a la composición mineralógica deducida por difracción de Rayos-X, que es: 80 % de kanditas, 15 de micas y 5 % de cuarzo para la fracción < 63 µ y 85 % de kanditas, 15 de micas e indicios de cuarzo para la fracción < 20 µ. Ambos análisis son propios de caolines de alta calidad, con bajos contenidos en hierro y titanio, escasa cantidad de álcalis (≈ 1 %) y alto contenido en alúmina (> 36 %).

La génesis de los materiales caolíníferos que forman este yacimiento es debida al desmantelamiento de los macizos graníticos próximos, alterados superficialmente. El área fuente se encuentra muy próxima y está constituída esencialmente por los granitos de Santa Tecla, situados al E. del yacimiento. El manto superficial formado por granitos caolinizados ha sido transportado por un proceso de solifluxión, deslizándose por las laderas occidentales del macizo y depositándose en un área de escasa pendiente, próximo al Océano.
Atlántico. La secuencia de los distintos niveles alterados, formados sobre el granito, se conserva en el mismo orden, en el área de sedimentación. De esta forma, los niveles estudiados corresponden exactamente con los que podríamos reconocer en un yacimiento de caolín formado "in situ", sobre rocas graníticas, salvo en lo referente a la base, que en el caso de encontrarse el depósito "in situ", sería la roca granítica fresca, mientras que en nuestro caso, encontrarnos el nivel edáfico existente en área de deposición antes de la sedimentación de los niveles transportados.

La secuencia granulométrica y mineralógica encontrada por nosotros en el corte estudiado, entre los niveles ST-1 a ST-4, se corresponde exactamente con los distintos niveles que se desarrollan en una caolinización meteórica sobre rocas graníticas, bajo clima templado y húmedo, mientras el nivel ST-5, presenta características similares a las del nivel ST-1, o sea, parece precisamente el nivel edáfico superficial, sobre el cual se ha depositado todo el conjunto meteorizado, fácilmente disgregable, que existía en el área fuente próxima. Hay pues una discontinuidad entre los niveles 4 y 5. Se han depositado, los sedimentos caoliníferos, sobre granitos alterados bajo las mismas condiciones en que se formaron los anteriores. Lógicamente un sondeo podría comprobar esta hipótesis sobre la repetición en profundidad de niveles similares a los aflorantes, y en igual orden.

La edad de la sedimentación es Cuaternaria antigua, probablemente realizada durante una de las épocas glaciares. Sin embargo la caolinización "in situ" pudo ocurrir en el Mioceno, o bien más recientemente. Aunque sin criterios
exactos de datación, se han descrito, en Galicia, diversos depósitos como estos de Santa Tecla, originados desde el Mioceno al Pleistoceno, y transportados y sedimentados durante el Cuaternario antiguo (HERNANDEZ SAMPELAYO, 1.941; MENDIZABAL, 1.941; PARGA PONDAL, 1.966; NONN, 1.967; GALAN y MARTIN VIVALDI, 1.973 b). Por ello y teniendo en cuenta que entre esos períodos han existido condiciones climáticas adecuadas para la formación de estos caolines, sólo podemos indicar que a nuestro juicio es, quizás, el Cuaternario antiguo la época más propicia para una caolinitización de este tipo, de acuerdo con el esquema evolutivo que ha descrito NONN (1.967) para los depósitos modernos de Galicia occidental.

La mina Ignacia forma parte del Grupo minero Cachadas, compuesto además por las minas "Carmina", "Mercedes", "Rosa" y otras. Las coordenadas geográficas medias son: 5°9'40'' W y 41°54'50'' N. Está situada al E. y SE. de A Guarda y al E. del Monte Santa Tecla y se extiende desde la orilla española del río Miño hacia el Norte.

La masa caolínífera existente en el yacimiento está constituida por sedimentos cuaternarios (LOPEZ DE AZCONA y col. 1.956) que proceden de materiales alterados de los granitos biotíticos-moscovíticos del W de Pontevedra. Estos sedimentos descansan sobre los granitos, que presentan cierta orientación y que constituyen el área fuente.

El tipo de sedimentación y la forma de los cantos, corresponden a un transporte corto, muy posible de tipo torrencial.

La superficie actual del yacimiento es horizontal y se
explota a cielo abierto, en canteras, con una extensión de unas 6 Ha.

El material caolinizado aparece en forma masiva aunque con algunos pequeños lentejones de arcillas rosas y rojas y con una potencia explotable superior a los 10 m. según un sondeo efectuado.

Dentro de la masa caolinífera, se observan cantos de cuarzo grandes y poco redondeados, trozos de granito orientado, pegmatitas gráficas y pequeñas concentraciones lineales de turmalina, lo que nos indica un bajo grado de madurez.

Sobre uno de los frentes lineales de explotación, se han tomado las cinco muestras (IGN-1 a IGN-5), que se corresponden con cada uno de los niveles diferenciados en la explotación. El nivel edáfico o capa vegetal es de medio metro de espesor, y está constituido por un material arenoso, color crema, con algunos bloques de diversos tamaños con aspecto de conglomerados.

 Debajo de este nivel, se encuentra una capa de caolín blanco-grisáceo, con pocas intercalaciones arenosas y óxidos de hierro, muy consistente. La potencia de este nivel es aproximadamente de 1 m.

En el muro, aparece otro nivel de unos 3 m. de potencia, constituido a base de arenas, arcillas y ocres de hierro, con una tonalidad crema-rosada.

El tercer nivel observable es arenoso, recuerda a un granito descompuesto muy caolinizado, de tono blanco y con una potencia de unos 6 m.

En profundidad y debajo del anterior, aparecen 2,5-3 m. de un caolín blanco-rosado, y por último, un quinto nivel
CORTE DE LA EXPLOTACION DE IGNACIA Y SITUACION DE LAS MUESTRAS ESTUDIADAS

IGN-1
IGN-2
IGN-3
IGN-4
IGN-5

1m

ARENAS Y CONGLOMERADOS
ARENAS Y ARCILLAS
GRANITO CAOLINIZADO

Fig. 6.10
de caolín arenoso de unos 2 m. de potencia, con color rosado e intercalaciones de Fe, sirve de base a todo el conjunto antes mencionado. (Fig. 6.10).

La muestra IGN corresponde al caolín lavado, obtenido por la empresa explotadora.

De este yacimiento se conocen algunos datos mineralógicos, químicos y genéticos aportados por MARTIN VIVALDI y col. (1.969); GALAN y MARTIN POZAS (1.971) y GALAN (1.974).

Por los análisis granulométricos efectuados (tabla VI.15) los niveles 3, 4 y 5 deben considerarse como arenas arcillosas, mientras que los niveles 1 y 2 son muy pobres en fracción arena, pudiéndose considerar especialmente el nivel 1 como un barro caolinífero, producto de un depósito final de tipo fluvial.

El análisis mineralógico semicuantitativo por difracción de Rayos-X, se recoge en la tabla VI.16 (muestras naturales y fracciones $< 20 \mu$ y $< 2 \mu$).

Según estos datos podemos observar que el caolín bruto está constituído por cuarzo, kanditas, micas y feldespatos, esencialmente. Los feldespatos son muy escasos en todas las muestras. El contenido medio de kanditas de las muestras 2, 3 y 5 es del 10-15 %, mientras que el de los niveles 1 y 4 oscila del 50-75 %. Las micas, que existen en todos los niveles, en general varían en porcentajes inversos a los de las kanditas.

En cuanto a las fracciones finas, como es natural, tienen gran proporción en minerales del caolín, mientras decrecen sus porcentajes de cuarzo, feldespatos y micas. El contenido medio en minerales del caolín de los niveles caoliní-
<table>
<thead>
<tr>
<th>Fracción</th>
<th>IGN-2</th>
<th>IGN-3</th>
<th>IGN-4</th>
<th>IGN-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>28,40</td>
<td>19,15</td>
<td>34,39</td>
<td>23,24</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>12,55</td>
<td>4,70</td>
<td>5,15</td>
<td>5,85</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>11,95</td>
<td>4,30</td>
<td>1,55</td>
<td>9,90</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>23,65</td>
<td>6,80</td>
<td>6,25</td>
<td>6,65</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>9,23</td>
<td>5,03</td>
<td>7,43</td>
<td>5,75</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>13,78</td>
<td>60,15</td>
<td>45,10</td>
<td>50,25</td>
</tr>
</tbody>
</table>

| | 99,56 | 100,13 | 99,87 | 101,64 |
TABLA VI.16.- Mina IGNACIA. Composición mineralógica del caolín. (%)

<table>
<thead>
<tr>
<th>Muestra total</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN-2</td>
<td>65</td>
<td>15</td>
<td>20</td>
<td>< 5</td>
</tr>
<tr>
<td>IGN-3</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>ind.</td>
</tr>
<tr>
<td>IGN-4</td>
<td>30</td>
<td>45</td>
<td>25</td>
<td>ind.</td>
</tr>
<tr>
<td>IGN-5</td>
<td>65</td>
<td>10</td>
<td>25</td>
<td>ind.</td>
</tr>
<tr>
<td>Caolín lavado</td>
<td>10</td>
<td>65</td>
<td>25</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 µ</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN-2</td>
<td>20</td>
<td>65</td>
<td>15</td>
<td>ind.</td>
</tr>
<tr>
<td>IGN-3</td>
<td>10</td>
<td>75</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>IGN-4</td>
<td>10</td>
<td>80</td>
<td>10</td>
<td>ind.</td>
</tr>
<tr>
<td>IGN-5</td>
<td>5</td>
<td>90</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2 µ</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN-2</td>
<td>10</td>
<td>75</td>
<td>15</td>
<td>ind.</td>
</tr>
<tr>
<td>IGN-3</td>
<td>5</td>
<td>85</td>
<td>10</td>
<td>ind.</td>
</tr>
<tr>
<td>IGN-4</td>
<td>5</td>
<td>85</td>
<td>10</td>
<td>ind.</td>
</tr>
<tr>
<td>IGN-5</td>
<td>5</td>
<td>90</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; F = Feldespatos; ind. = indicios
TABLA VI.17.- Mina IGNACIA. Análisis Químico. (%)

IGN-1

<table>
<thead>
<tr>
<th>Material</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>47,67</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>35,07</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>0,64</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0,64</td>
</tr>
<tr>
<td>MgO</td>
<td>0,28</td>
</tr>
<tr>
<td>CaO</td>
<td>0,42</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0,30</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2,50</td>
</tr>
<tr>
<td>Perd. 1.000 ºC</td>
<td>12,62</td>
</tr>
<tr>
<td></td>
<td>100,14</td>
</tr>
</tbody>
</table>

\[
\frac{\text{SiO}_2}{\text{Al}_2\text{O}_3} = 1,35
\]
feros más ricos (niveles IGN-1-3-4 y 5) es de 80 y 85 % para las fracciones $< 20 \mu$ y $< 2 \mu$, respectivamente.

En este yacimiento, se comercializa el caolín en crudo como arcilla refractaria y también el caolín lavado. La composición de este caolín lavado es:

- Kanditas - 65 %
- Cuarzo - 10 %
- Mica - 25 %

Se da el caso de que el nivel arcilloso nº 1, presenta una composición similar a este caolín lavado, o sea, puede considerarse como un caolín lavado natural.

Por el análisis químico de la fracción $< 20 \mu$ de la muestra IGN-1 (Tabla VI-17), podemos observar que es un caolín de buena calidad, con bajos contenidos en hierro y titanio y alto porcentaje en alúmina ($> 35 \%$), pero con un relativo alto contenido en álcalis (2,5-3 \%) lo que perjudica su refractariedad como fire-clay. Los álcalis son consecuencia de la presencia de moscovita ($\sim 15 \%$).

La génesis de este yacimiento es claramente sedimentaria procediendo los materiales en su mayor parte, de las rocas graníticas de los alrededores y transportados a la cuenca actual, por regímenes torrentciales y finalmente fluviales. En los sedimentos inferiores todavía se conservan algunas estructuras, bastante alteradas que recuerdan a la roca original y que han debido ser arrancadas y transportadas a corta distancia del área fuente.

El yacimiento Bernardino está situado en los términos de O Rosal-Tomiño. El acceso se realiza por la carretera de A Guarda hacia Tui, pasado un lavadero público y a unos
30-40 m. existe un camino vecinal a la izquierda que conduce al depósito. Las coordenadas geográficas son: 5°06'17" W y 41°56'32" N.

La masa de arcillas caoliníferas del depósito está formada por sedimentos cuaternarios procedentes de los materiales alterados de los granitos de dos micas del W. de la provincia, al igual que ocurre en el depósito Ignacia. Los sedimentos descansan sobre los granitos, constituyendo estos el área fuente.

Se trata de un depósito, a cielo abierto, que actualmente no está en explotación, de forma más o menos circular y con una potencia inferior a los 10 m. En el depósito y para su estudio, se han considerado dos cortes uno que denominamos "izquierdo" y otro "derecho". En el corte "izquierdo", hemos considerado dos niveles diferentes, recubiertos por una capa vegetal con conglomerados y arenas de diversos tamaños, con medio metro de potencia. Debajo de esta capa, aparecen arenas finas caoliníferas, de un color blanco-grisáceo, algo ferruginosas, de metro y medio de potencia. A continuación y hacia el muro, existe el segundo nivel, formado por un calín color crema y más fino que el anterior de unos dos metros de potencia y por último y como base del conjunto se encuentra un nivel limo-arenoso fino de unos dos metros también de espesor.

En el corte "derecho", situado enfrente del otro, podemos observar tres niveles bien diferenciados, encima de los cuales aparece la misma capa vegetal del corte izquierdo con sus conglomerados angulosos y arenas de diversos tamaños y menos de 1 m. de espesor. Debajo de estos conglomerados un
CORTES DE LA EXPLOTACION DE BERNARDINO Y SITUACION DE LAS MUESTRAS ESTUDIADAS

Corte Izquierdo

Corte Derecho

Fig. 6.11
primer nivel de caolín blanco-grisáceo, arenoso y de unos dos metros de espesor. A continuación y en profundidad, un segundo nivel también caolinífero, de un color crema y también arenoso de 2 m. de potencia y por último una capa de arenas ferruginosas, con un color amarillento fuerte de metro y medio de espesor. (Fig. 6.11).

Las siglas utilizadas en el estudio del depósito, para el corte izquierdo han sido BER-1 y BER-2 y para el corte derecho, BER-1, BER-2 y BER-3, correspondiéndose con los niveles antes citados.

Desde el punto de vista granulométrico (tabla VI.18), los dos niveles observados en el corte izquierdo son semejantes y no existe entre ellos solución de continuidad, aunque visualmente se hayan distinguido. Se trata de unas arenas finas limo-arcillosas.

Muy diferentes son los sedimentos expuestos en el corte derecho, que son de características más arenosas especialmente el inferior. Excepto el representado por la muestra BER-2, pueden definirse como arenas.

En cuanto a la composición mineralógica (tabla VI.19), ocurre algo parecido. Los dos niveles distinguidos en el campo para el corte izquierdo son semejantes, mientras en el corte derecho destaca como más caolinífero el nivel dos (que era el menos arenoso) y por el contrario el nivel tres es una arena. Sin embargo, las fracciones finas son todas caoliníferas y bastante semejantes con contenidos medios del 50 % y del 60 % para las fracciones < 20 y < 2 µ, respectivamente. Sólo difiere marcadamente de todo este conjunto la muestra BER-3, con un gran contenido en cuarzo heterométrico
<table>
<thead>
<tr>
<th>Fracción</th>
<th>BER-izq.1</th>
<th>BER-izq.2</th>
<th>BER-der.1</th>
<th>BER-der.2</th>
<th>BER-der.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>21,39</td>
<td>25,19</td>
<td>10,03</td>
<td>18,50</td>
<td>1,88</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>11,75</td>
<td>14,05</td>
<td>5,75</td>
<td>10,80</td>
<td>1,90</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>14,40</td>
<td>19,20</td>
<td>10,65</td>
<td>8,55</td>
<td>1,20</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>21,70</td>
<td>20,30</td>
<td>7,45</td>
<td>17,80</td>
<td>4,05</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>25,80</td>
<td>20,45</td>
<td>18,85</td>
<td>26,50</td>
<td>6,45</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>4,00</td>
<td>1,50</td>
<td>48,10</td>
<td>17,20</td>
<td>83,85</td>
</tr>
<tr>
<td></td>
<td>99,04</td>
<td>100,69</td>
<td>100,83</td>
<td>99,35</td>
<td>99,33</td>
</tr>
<tr>
<td>Muestra total</td>
<td>Q</td>
<td>K</td>
<td>M</td>
<td>F</td>
<td>I-Cl</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>BER-1</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>ind.</td>
<td></td>
</tr>
<tr>
<td>BER-2</td>
<td>55</td>
<td>25</td>
<td>20</td>
<td>ind.</td>
<td></td>
</tr>
<tr>
<td>Fracción < 20μ</td>
<td>Q</td>
<td>K</td>
<td>M</td>
<td>F</td>
<td>I-Cl</td>
</tr>
<tr>
<td>BER-1</td>
<td>15</td>
<td>65</td>
<td>20</td>
<td>--</td>
<td>< 5</td>
</tr>
<tr>
<td>BER-2</td>
<td>10</td>
<td>70</td>
<td>15</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>Fracción < 2 μ</td>
<td>Q</td>
<td>K</td>
<td>M</td>
<td>F</td>
<td>I-Cl</td>
</tr>
<tr>
<td>BER-1</td>
<td>10</td>
<td>70</td>
<td>20</td>
<td>--</td>
<td>ind.</td>
</tr>
<tr>
<td>BER-2</td>
<td>10</td>
<td>65</td>
<td>20</td>
<td>--</td>
<td>5</td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; F = Grupo de feldespatos
I-Cl = Interestratificados de Ilita-clorita; Mo = Esmectitas
TABLA VI.20. - Mina BERNARDINO. Análisis Químicos. (%)

BER-2 (der)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Total</th>
<th>< 20 μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>75,30</td>
<td>50,40</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15,56</td>
<td>31,89</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2,20</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>0,17</td>
<td>2,62</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,76</td>
<td>0,96</td>
</tr>
<tr>
<td>MgO</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0,10</td>
<td>0,42</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,19</td>
<td>0,46</td>
</tr>
<tr>
<td>K₂O</td>
<td>1,40</td>
<td>3,44</td>
</tr>
<tr>
<td>Pérd. 1.000 °C</td>
<td>4,15</td>
<td>9,69</td>
</tr>
</tbody>
</table>

100,63 99,88
que va desde los tamaños \(< 2 \mu\), con un 25 %, hasta un 75 % en el total.

Recuerda en su mineralogía a los niveles terciarios más inferiores de la cuenca Porriño-Tui estudiados en aquellos yacimientos. Son en general sedimentos poco maduros.

El análisis químico se ha efectuado sobre la muestra BER-2 (der.), en el total y en la fracción \(< 20\mu\). En la tabla VI.20 pueden observarse los resultados obtenidos. La relación sílice-alúmina de la fracción \(< 20\mu\) es 1,5, un poco superior a la relación teórica de la caolinita; el exceso de SiO₂ está justificado por la presencia de cuarzo, mica y clorita. El alto contenido de potasio de la fracción \(< 20\mu\) es debido principalmente al aumento de illita respecto al de la muestra total.

El alto contenido en SiO₂ (75 %) de la muestra total es debido a la presencia de minerales extraños al grupo del caolín especialmente cuarzo y feldespatos.

El posible caolín lavado \(< 20\mu\) tiene en general buenas características como material cerámico, presentando como máximos inconvenientes, los altos porcentajes de álcalis y de hierro.

Características cristaloquímicas de las kanditas.

Los datos cristaloquímicos más significativos de las caolinititas tales como temperatura del endotérmico principal y sus razones de pendientes, los índices de cristalinidad de Hinckley, politipos encontrados, y tamaños y formas de las partículas se recogen en la tabla VI.21.

De los estudios térmicos y difractométricos, se deduce
<table>
<thead>
<tr>
<th>Muestra</th>
<th>T° C endotérmico principal</th>
<th>Rp.</th>
<th>IH</th>
<th>Tamaño y forma partícula (M.E.)</th>
<th>Grado de orden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>(1)</td>
</tr>
<tr>
<td>ST-4</td>
<td>588</td>
<td>2,3</td>
<td>0,35</td>
<td>0,1-0,3 μ SH</td>
<td>pM</td>
</tr>
<tr>
<td>IGN-1</td>
<td>574</td>
<td>2,1</td>
<td>0,4</td>
<td>0,1-0,3 μ SR</td>
<td>pM</td>
</tr>
<tr>
<td>BER-2 (der)</td>
<td>572</td>
<td>2,4</td>
<td>0,45</td>
<td>0,1-0,3 μ SH</td>
<td>pM</td>
</tr>
</tbody>
</table>

Rp = Razón pendientes end. principal
IH = Indice de Hinckley
SH = Subhexagonal
pH = Pseudohexagonal
SR = Subredondeados
(1) según BRAMAO et al. (1.952)
(2) según MURRAY y LYON (1.956) y utilizando la terminología de GALAN y ESPINOSA (1.974)
que las caolinitas son de tipo pM con baja cristalinidad. Fig. 6.12.

Del estudio difractométrico se deduce la presencia de metahalloysita y caolinita, junto con pequeñas cantidades de halloysita (que llega a no detectarse en la mina Bernardino). La halloysita, especialmente en el yacimiento de Santa Tecla, presenta distintos estados de hidratación, puesto que frente al etilenglicol, parte de las kanditas existentes a 7 Å se acomplejan dando efectos a 7,5-8,5 Å y a veces hasta 10,5 Å.

Al microscopio electrónico se observa junto a la caolinita, formas enrolladas tubulares y semienrolladas atribuibles a halloysita. También, en el yacimiento de Santa Tecla se ha observado gibsita.

Las caolinitas son de pequeños tamaños (0,1-0,3 μ) mientras las halloysitas pueden alcanzar la micra de longitud y son especialmente abundantes y grandes las del depósito de Santa Tecla. Por el contrario son muy escasas las halloysitas en la mina Bernardino, lo que unido a un mayor índice de cristalinidad de sus caolinitas, evidencian una mayor madurez. Recuérdese que anteriormente se indicaba que su posición estratigráfica era más baja.

De acuerdo con este criterio cristaloquímico y teniendo en cuenta además la presencia de gibsita, los depósitos de Santa Tecla e Ignacia son más modernos e inmaduros.
ATD CAOLINES CUENCA LA GUARDIA-EL ROSAL-TOMIÑO

Fig. 6.12

Microfotografía de la muestra BER-1. Caolinitas y algunos cristales de halloysitas.
6.3.- CUENCA DE DENA

Descripción de los depósitos. Resultados y discusión.

En esta pequeña cuenca se han estudiado los depósitos de la mina Lourdes. Esta mina está situada a la derecha de la carretera que va desde A Toxa a Cambados y en las cercanías de las localidades de Ponte Dena y Meaño. Las coordenadas geográficas medias son: 5º07'35'' W y 42º26'45'' N.

Se trata de un depósito, que actualmente no está en explotación, con una potencia alrededor de los 6 m. Sobre uno de los frentes actuales, se han tomado dos muestras (DENA-1 y DENA-2), que se corresponden con cada uno de los niveles diferenciados en la explotación. El nivel edáfico o capa vegetal es aproximadamente de 1 m. de espesor y está constituido por unas arenas de color crema y pequeños bloques de conglomerados de diversos tamaños.

Debajo de estas arenas, aparece un primer nivel de arcillas caoliníferas, algo arenosas, de un color crema. La potencia de este nivel es de unos 3 m. aproximadamente. El segundo nivel diferenciado, también de arcillas caoliníferas, es de color rojizo, con unos 2 m. de potencia, también arenoso y que sirve de base a todo el conjunto antes mencionado. (Fig. 6.13).

En cuanto a la granulometría de los distintos materiales del depósito, podemos indicar (tabla VI.22) que en términos generales pueden definirse como arenas arcillo-limosas, bien clasificadas, con porcentajes de fracciones finas (< 20 μ) del orden del 35 %.

La composición mineralógica de estos sedimentos son se-
CORTE DE LA EXPLOTACION DE LOURDES(DENA)
Y SITUACION DE LAS MUESTRAS ESTUDIADAS

DENA-1

DENA-2

ARENAS Y CONGLOMERADOS

ARCILLAS CAOLINIFERAS

Fig. 6.13
<table>
<thead>
<tr>
<th>Fracción</th>
<th>DENA-1</th>
<th>DENA-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>15,30</td>
<td>20,40</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>10,40</td>
<td>15,20</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>12,80</td>
<td>10,10</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>15,10</td>
<td>14,80</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>10,70</td>
<td>10,40</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>35,20</td>
<td>28,50</td>
</tr>
</tbody>
</table>

99,50 99,40
TABLA VI.23.- Mina LOURDES. Composición Mineralógica. (%)

<table>
<thead>
<tr>
<th>Fracción total</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>Mo</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENA-1</td>
<td>55</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>DENA-2</td>
<td>40</td>
<td>20</td>
<td>35</td>
<td>ind.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 μ</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENA-1</td>
<td>10</td>
<td>55</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>DENA-2</td>
<td>5</td>
<td>65</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; Mo = Esmentitas
F = Grupo de feldespatos; ind. = indicios
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>70,40</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16,48</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2,65</td>
</tr>
<tr>
<td>FeO</td>
<td>0,28</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,18</td>
</tr>
<tr>
<td>MgO</td>
<td>0,61</td>
</tr>
<tr>
<td>CaO</td>
<td>0,17</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,12</td>
</tr>
<tr>
<td>K₂O</td>
<td>3,67</td>
</tr>
<tr>
<td>Pérd. 1.000 ºC</td>
<td>4,67</td>
</tr>
<tr>
<td></td>
<td>99,32</td>
</tr>
</tbody>
</table>
mejantes y apenas se enriquecen en caolinita en sus fracciones finas (tabla VI.23), por lo que no pueden ser utilizados como caolines para lavar, sino en su estado natural. Deben considerarse por tanto, como arcillas caoliníferas de tipo illito-caolinífero con gran contenido en cuarzo. Serán simplemente arcillas ligeramente refractarias.

Las micas son muy abundantes, de gran tamaño y bien formadas (fig. 6.14). No se aprecian cantidades importantes de halloysita. La caolinita es la kandita principal con heterometría de tamaños, e índice de cristalinidad medio de 0,4. El diagrama de DTA (fig. 6.16) de la fracción $< 20\mu$ muestra un endotérmico a 575 ºC con una razón de pendientes de 0,7 en ancho, propio de caolinitas mal cristalizadas y politipo desordenadas, que ratifica lo ya deducido y observado por Rayos-X y microscopía electrónica.

Con estos resultados mineralógicos, granulométricos y cristaloquímicos, estas arcillas deben ser consideradas como fire-clays.

El análisis químico (tabla VI.24) de la muestra DENA-1 (total) corresponde a un fire-clay muy rico en cuarzo y álcalis, como así mismo es excesivo el porcentaje en Fe$_2$O$_3$ que en gran parte se encuentran como goethita (fig. 6.15). Por tanto, debe considerarse desde el punto de vista técnico como un fire-clay de baja calidad; muy inferior a aquéllos de A Guarda.
Fig. 6.14.
Microfotografía de la muestra DENA-1. Abundancia de micas y algún cristal de caolinita.

Fig. 6.15.
Microfotografía de la muestra DENA-1. Goethita.
ATD CAOLIN CUENCA DE DENA

Fig. 6.16
6.4.- AREA DE A ESTRADA – VALGA

Descripción de los depósitos. Resultados y discusión.

De este área se han estudiado los depósitos aflorantes en la cantera de la mina Ana. Esta cantera está situada a la izquierda de la carretera que va desde Pontecesures a Vilagarcía de Arousa y en las cercanías de la localidad de Ponte Valga. La zona arcillosa sedimentaria de Valga está en la parroquia de Louro, a ambos lados de la carretera de Cesures a Catoira. Las coordenadas geográficas medias son: 4º58'39'' W y 42º42'43'' N. Es el depósito más nor-occidental de toda la provincia.

La zona de A Estrada-Valga, donde está ubicado el depósito, está constituida fundamentalmente por pegmatitas, con algunos berilos y turmalinas; en la parte alta del río Ulla, límite N de la zona, aparecen unas rocas ultrabásicas, constituidas casi en su totalidad por dioritas, dunitas y serpentinas; el resto por migmatitas y pegmatitas.

La superficie actual del yacimiento es horizontal y se explota a cielo abierto.

Sobre uno de los frentes actuales de explotación, se han tomado tres muestras (EST-1 a EST-3), que se corresponden con cada uno de los niveles diferenciados en la explotación. El nivel edáfico o capa vegetal es de 3 m. de espesor y está constituído por unas arenas, color crema, con bloques de diversos tamaños con aspecto de conglomerados.

Debajo de este nivel, se encuentran unas arcillas marrón-cremosas, bastante areníferas, con intercalaciones de micas, similar a un barro arcilloso. La potencia de este ni-
CORTE DE LA EXPLOTACION DE ANA(LA ESTRADA-VALGA) Y SITUACION DE LAS MUESTRAS ESTUDIADAS

Fig. 6.17
vel es de 3 m. aproximadamente.

En profundidad y debajo del anterior, aparece otro nivel de unos 6 m. de potencia, constituido por un caolín color crema más claro que el anterior y poco arenífero y por último un tercer nivel de arcillas caoliníferas de color rosado, que a veces toma tonalidades rojizas, de unos 4 m. de potencia, algo más arenoso que el anterior, que sirve de base a todo el conjunto antes mencionado. (Fig. 6.17).

En relación a la granulometría de los materiales caoliníferos (niveles 2 y 3) podemos indicar (tabla VI.25) que son prácticamente similares, con porcentajes de arcilla de 30 a 35 %. Pueden definirse como arenas arcillo-limosas.

La composición mineralógica semicuantitativa de las muestras estudiadas (tabla VI.26) indica que las arenas caoliníferas (muestras EST-2 y EST-3) se enriquecen en minerales del caolín en las fracciones finas, alcanzando hasta el 80 %, con sólo un 5 % de cuarzo, mientras que las arcillas del nivel 1 (muestra EST-1) es del tipo illito-caolinífera, no variando sustancialmente su composición del total a las fracciones finas.

La arcilla del nivel 1 es de tipo fire-clay muy rica en micas y puede ser usada en su forma natural, mientras que los niveles más arenosos (niveles 2 y 3) pueden ser lavados, obteniendo un caolín de cierta valía cerámica (independientemente de su falta de blancaura).

Las kanditas predominantes son del tipo halloysita, inclusive al microscopio electrónico se han detectado caolinitas de pequeños tamaños de partículas y deficiente cristalinidad, montmorillonita y gran cantidad de goethita (fig.
<table>
<thead>
<tr>
<th>Fracción</th>
<th>EST-2</th>
<th>EST-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>20,55</td>
<td>12,55</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>12,25</td>
<td>16,60</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>10,35</td>
<td>11,90</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>16,30</td>
<td>14,50</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>32,50</td>
<td>35,50</td>
</tr>
</tbody>
</table>

<p>| | 99,11 | 99,30 |</p>
<table>
<thead>
<tr>
<th>Fracción total</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST-1</td>
<td>25</td>
<td>25</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>EST-2</td>
<td>15</td>
<td>50</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>EST-3</td>
<td>55</td>
<td>30</td>
<td>15</td>
<td><5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20µ</th>
<th>Q</th>
<th>K</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST-1</td>
<td>25</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>EST-2</td>
<td>10</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>EST-3</td>
<td>10</td>
<td>70</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2 µ</th>
<th>Q</th>
<th>K</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST-1</td>
<td>15</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>EST-2</td>
<td>5</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>EST-3</td>
<td>5</td>
<td>70</td>
<td>25</td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; F = Grupo de feldespatos
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>< 20 μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>58,63</td>
<td>45,72</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>22,72</td>
<td>34,92</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>3,45</td>
<td>4,44</td>
</tr>
<tr>
<td>FeO</td>
<td>0,45</td>
<td>0,28</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0,74</td>
<td>0,92</td>
</tr>
<tr>
<td>MgO</td>
<td>< 0,50</td>
<td>0,50</td>
</tr>
<tr>
<td>CaO</td>
<td>0,16</td>
<td>0,12</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0,13</td>
<td>0,48</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2,32</td>
<td>1,97</td>
</tr>
<tr>
<td>Pérd. 1.000 °C</td>
<td>9,61</td>
<td>11,28</td>
</tr>
</tbody>
</table>

98,71 100,63
Fig. 6.18. Microfotografía de la muestra EST-1. Abundancia de goethita. Montmorillonita, halloysita y poca caolinita.

ATD CAOLIN CUENCA LA ESTRADA–VALGA

Fig. 6.19
6.18).

El diagrama DTA (fig. 6.19) realizado sobre la fracción < 20 \(\mu \), muestra un endotérmico a 375 °C, debido a cantidades apreciables (no bien detectadas por Rayos-X) de gibsita. El exotérmico a 368 °C es originado por la descomposición de óxidos de hierro.

En los análisis químicos realizados sobre la muestra EST-2 (tabla VI.27), se puede observar que existe una marcada diferencia entre el material bruto y la fracción < 20 \(\mu \); las diferencias prácticamente se manifiestan en la relación SiO\(_2\)/Al\(_2\)O\(_3\), debido a la existencia fundamental de sílice libre en el material bruto. Es de destacar así mismo, el alto contenido en hierro, en los dos materiales, con un 4 % y de álcalis con un 2 %. Este hierro, como se ha indicado anteriormente, está fundamentalmente en forma de goethita.

6.5.- AREA DE NIGRAN

Descripción de los depósitos. Resultados y discusión.

En el área de Nigrán se han estudiado los depósitos de la serie aflorante en la cantera de la mina Nigranitas. Está situada a la izquierda de la carretera que va desde Baiona a Vigo por la costa y a la altura del pueblo de Nigrán, justamente a la salida de éste. Las coordenadas geográficas medias son 5°06'11'' W y 42°08'28'' N.

Se trata de un depósito, que actualmente no está en explotación, a cielo abierto y con una potencia alrededor de los 7-8 m. Se pueden distinguir en el frente dos niveles, recubiertos por una capa vegetal de 1 m. de espesor formados
CORTE DE LA EXPLOTACION DE NIGRANITAS
Y SITUACION DE LAS MUESTRAS ESTUDIADAS

Fig. 6.20
por arenas y conglomerados de diversos tamaños. Debajo de estos conglomerados, aparece un primer nivel de unas arcillas caoliníferas, con gran proporción de arenas, de color amarillento claro y de unos 3 m. de potencia y por último, sirviendo de base a todo el conjunto, un segundo nivel de arcillas caoliníferas también, de un color amarillento más fuerte que el anterior, con algunas micas y algo menos proporción de arenas y de unos 4 m. de espesor. (Fig. 6.20).

Para el estudio mineralógico del depósito, se han escogido dos muestras (NIG-1 y NIG-2), correspondiéndose con cada uno de los niveles anteriormente citados.

En cuanto a la granulometría de los materiales del depósito, podemos indicar (tabla VI-28) que los dos niveles son prácticamente similares con un porcentaje de arcilla de un 25 %. El nivel NIG-1 tiene un porcentaje en fracción arena de un 10 % superior al del nivel NIG-2. Pueden considerarse arenas arcillosas.

En relación a la composición mineralógica semicuantitativa de las muestras estudiadas (tabla VI.29), podemos indicar que son sedimentos típicos de los considerados como arenas caoliníferas. Las fracciones finas pueden llegar hasta el 95 % de caolinita con menos del 5 % de cuarzo. Como minoritarios existe montmorillonita e interestratificados del tipo illita-montmorillonita.

Los minerales del caolín encontrados mediante el análisis microscópico son caolinita y halloysita. También ha sido observada la montmorillonita por esta técnica.

El tamaño medio de los cristales de caolinita es de 0,1 μ, por tanto predominan los tamaños muy pequeños. Sin
<table>
<thead>
<tr>
<th>Fracción</th>
<th>NIG-1</th>
<th>NIG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>18,63</td>
<td>13,23</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>8,75</td>
<td>12,05</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>8,35</td>
<td>13,10</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>10,95</td>
<td>19,35</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>10,57</td>
<td>13,61</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>43,16</td>
<td>28,-</td>
</tr>
<tr>
<td></td>
<td>100,41</td>
<td>99,34</td>
</tr>
<tr>
<td>Fracción total</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>NIG-1</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>NIG-2</td>
<td>35</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 μ</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIG-1</td>
<td>5</td>
<td>90</td>
<td>5</td>
<td>< 5</td>
</tr>
<tr>
<td>NIG-2</td>
<td>< 5</td>
<td>95</td>
<td>< 5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2 μ</th>
<th>Q</th>
<th>K</th>
<th>M</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIG-1</td>
<td>< 5</td>
<td>90</td>
<td>5</td>
<td>< 5</td>
</tr>
<tr>
<td>NIG-2</td>
<td>< 5</td>
<td>95</td>
<td>< 5</td>
<td></td>
</tr>
</tbody>
</table>

Q = Cuarzo; K = Kanditas; M = Micas; Mo = Esmectitas
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>< 20 μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>63,71</td>
<td>44,50</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>22,94</td>
<td>36,80</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1,65</td>
<td>2,93</td>
</tr>
<tr>
<td>FeO</td>
<td>0,34</td>
<td>0,28</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,42</td>
<td>0,64</td>
</tr>
<tr>
<td>MgO</td>
<td>0,50</td>
<td>0,69</td>
</tr>
<tr>
<td>CaO</td>
<td>0,09</td>
<td>0,10</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,08</td>
<td>0,34</td>
</tr>
<tr>
<td>K₂O</td>
<td>0,75</td>
<td>0,64</td>
</tr>
<tr>
<td>Pérd. 1.000 °C</td>
<td>9,38</td>
<td>12,74</td>
</tr>
</tbody>
</table>

99,66 99,66
embargo, no están mal formados, presentando formas seudohe-
axonales. La halloysita es más bien escasa. El índice de
cristalinidad de Hinkley es de 0,7.

Estos caracteres cristaloquímicos, mineralógicos, granu-
alométricos y su situación en la base de la serie nos pone
en evidencia que este nivel está "in situ" y es el granito
cainoilizado. En otras palabras, estamos ante un yacimiento
de alteración meteórica "in situ", recubierto por materiales
groseros (a veces más arcillosos) sedimentarios de origen
aluvial y de carácter también cainoilítro.

El diagrama de DTA (fig. 6.21), realizado sobre la frac-
ción $< 20 \mu m$, muestra un endotérmico principal a 580 °C con
una razón de pendientes de 1,3 propia de cainoilitas bien
cristalizadas. Estas son más ordenadas y mejor cristalizadas
que las de los demás yacimientos. Parece existir un ligero
exotérmico, hacia los 370 °C debido a la existencia de óxi-
dos de hierro (goethita).

El análisis químico (tabla VI.30) se ha realizado sobre
la muestra N1G-2 (fracción total y $< 20 \mu m$). Podemos apreciar
a la vista de la tabla, que existe una gran diferencia entre
el material bruto y la fracción $< 20 \mu m$, esencialmente en lo
referente a la sílice y a la alúmina, pues mientras en la
fracción total, la relación sílice-alúmina, supera el 2,5,
en la fracción $< 20 \mu m$, esta relación es de 1,20, composición
muy próxima a la teórica de un cainoil.

Es de destacar así mismo, que el contenido en hierro de
la fracción total es de 2 %, pasando a más de un 3 % en la
$< 20 \mu m$; sin embargo en las dos fracciones, el contenido en
ácidos no sobrepasa el 1 %.
Microfotografía de la muestra NIG-1. Caolinita, montmorillonita y algunos paquetes de halloysita.

ATD CAOLIN AREA DE NIGRAN

Fig. 6.21
En consecuencia, estas arenas caoliníferas desde el punto de vista mineralógico y químico sólo presentan como desventajas para su explotación la presencia de óxidos de hierro en cantidades apreciables que impurifican y colorean al caolín.

6.6.- AREA DE SANXENXO - O GROVE

Descripción de los depósitos. Resultados y discusión.

Los depósitos estudiados dentro de este área han sido los de San Esteban y San Esteban 2ª.

La mina San Esteban está situada a la derecha de la carretera general entre Sanxenxo y A Toxa, frente de la playa de Maxor y poco antes de la más conocida playa de A Lanzada. Las coordenadas geográficas medias son: 5°10'48'' W y 42°26'44'' N.

La masa arcillosa del depósito descansa sobre los granitos de dos micas, presentes en todo el W de la provincia. Se trata de un depósito en el que se explotan tanto arcillas caoliníferas como estaño, a cielo abierto y con una potencia de unos 15 m. en un frente de unos 50 m. de longitud. Los lentejones estanníferos son aluviales y su sedimentación se ha producido simultáneamente con la desmantelación de las áreas caolinizadas dando lugar a este depósito sedimentario. Sin embargo, el origen del caolín, en el área fuente bien podría ser hidrotermal, si estaba en relación con la formación de los filones de cuarzo estanníferos. Se pueden considerar en el yacimiento cinco niveles diferenciados, recubiertos por una cobertura vegetal de 1 m. de espesor con
CORTE DE LA EXPLOTACION DE SAN ESTEBAN
Y SITUACION DE LAS MUESTRAS ESTUDIADAS

Fig. 6.22
conglomerados y arenas de diversos tamaños. Debajo de esta capa vegetal aparece un primer nivel o zona oxidada con intercalaciones de hierro y/o estano, de un color pardo-oscuro, de unos 3 m. de espesor, muy arenífero. Seguidamente, y hacia el muro, se encuentra otro nivel de un caolín blanco-grisáceo de 4 m. aproximadamente de potencia y poca proporción de arenas. Un tercer nivel, formado por un caolín rojizo, algo más arenoso que el anterior, de unos 3 m. de espesor, donde las arenas tienen tonalidades rojizas y amarillentas. A continuación aparece un nivel de casiterita y por último, como base de todo el conjunto aparece un quinto nivel de un caolín blanco, el menos arenoso, de unos 2 m. de espesor. (Fig. 6.22).

Para el estudio de este depósito se han elegido muestras de los niveles caoliníferos, cuyas muestras se han denominado SE-2, SE-3 y SE-5 (niveles 2, 3 y 5).

Estos niveles pueden ser clasificados por su granulometría (tabla VI.31) como arenas arcillosas, en los que el tamaño de la arena es bastante fino (normalmente < 0,2 mm).

Desde el punto de vista mineralógico (tabla VI.32), están compuestos por cuarzo, micas y minerales del caolín, presentando feldespatos y montmorillonita como minoritarios.

Los porcentajes son bastante similares en las tres muestras, lo que indica que sólo existen diferencias texturales y de caracteres fisiográficos entre los tres niveles distinguídos en el campo.

Por microscopio electrónico, se pueden distinguir gran cantidad de halloysitas, caolinitas y micas. Las halloysitas pueden llegar hasta 1,5 μ de longitud, mientras las caolini-
<table>
<thead>
<tr>
<th>Fracción</th>
<th>SE-2</th>
<th>SE-3</th>
<th>SE-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>36,10</td>
<td>33,-</td>
<td>48,-</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>5,70</td>
<td>5,50</td>
<td>7,60</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>7,50</td>
<td>5,30</td>
<td>9,65</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>13,-</td>
<td>8,20</td>
<td>14,50</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>26,30</td>
<td>29,70</td>
<td>14,30</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>11,-</td>
<td>18,-</td>
<td>5,-</td>
</tr>
</tbody>
</table>

99,60 99,70 99,05
TABLA VI.32.- Mina SAN ESTEBAN. Composición mineralógica del caolín. (%)

<table>
<thead>
<tr>
<th>Muestra total</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-2</td>
<td>35</td>
<td>35</td>
<td>25</td>
<td>5</td>
<td>ind.</td>
</tr>
<tr>
<td>SE-3</td>
<td>60</td>
<td>20</td>
<td>15</td>
<td>5</td>
<td>ind.</td>
</tr>
<tr>
<td>SE-5</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>5</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 µ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-2</td>
<td>15</td>
<td>10</td>
<td>70</td>
<td>ind.</td>
<td>5</td>
</tr>
<tr>
<td>SE-3</td>
<td>20</td>
<td>15</td>
<td>65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SE-5</td>
<td>15</td>
<td>15</td>
<td>65</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 2 µ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-2</td>
<td>15</td>
<td>10</td>
<td>70</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>SE-3</td>
<td>10</td>
<td>20</td>
<td>70</td>
<td>ind.</td>
<td>-</td>
</tr>
<tr>
<td>SE-5</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td>-</td>
<td>< 5</td>
</tr>
</tbody>
</table>

Q = Cuarzo; M = Micas; K = Caolinita; F = Feldespatos
Mo = Esmectitas; ind = indicios
Microfotografía de la muestra SE-5. Micas, caolinitas y halloysitas.

ATD CAOLIN SAN ESTEBAN

Fig. 6.23
tas son del orden de 0,2 μ. Son subexagonales, mientras que las placas de micas están muy deterioradas, con formas angulosas asimétricas.

No parecen, estos minerales, por sus características morfológicas y cristaloquímicas, y por la presencia de halloysita, que guarden relación con ningún proceso hidrotermal, como su asociación espacial a las mineralizaciones de casiterita podría indicar.

El diagrama de DTA (Fig. 6.23) realizado sobre la fracción < 20 μ, muestra un endotérmico a 571 °C, con razón de pendientes propia de caolinitas mal cristalizadas y politipo desordenadas que ratifica lo ya deducido y observado por rayos-X y microscopía electrónica.

La mina San Esteban 2ª está situada a la derecha de la carretera que va desde Sanxenxo a A Toxa, en la localidad de Noalla, entre la iglesia parroquial y el camino vecinal que va a Vilalonga. Las coordenadas geográficas medias son: 5º09'44'' W y 42º25'43'' N.

Las arcillas caoliníferas del yacimiento, están formadas preferentemente por los materiales alterados de los granitos circundantes y de los esquistos paleozoicos descansando sobre los propios granitos.

Se trata de un depósito que actualmente no está en explotación. Presenta una potencia alrededor de los 20 m. Se pueden distinguir en el frente cuatro niveles, recubiertos por una capa vegetal de medio metro de espesor y por unos 2 m. de conglomerados y arenas de varios tamaños. Debajo de estos conglomerados aparece un primer nivel de esquistos micáceos, de un color blanco-cremoso, de unos 3 m. de potencia
CORTE DE LA EXPLOTACION DE SAN ESTEBAN 2°
Y SITUACION DE LAS MUESTRAS ESTUDIADAS

Fig. 6.24
y arenoso también. A continuación y hacia el muro, un segundo nivel formado a base de un granito caolinizado, de un color blanco, de unos doce metros de espesor. Un tercer nivel, constituído también por un granito en estado de descomposición, arenoso, de un color blanco-grisáceo con unos 2 m. de potencia y por último, sirviendo de base a todo el conjunto vuelve a parecer un cuarto nivel formado por unos esquistos con micas, con intercalaciones arenosas y de metro y medio de espesor (Fig. 6.24).

Para el estudio mineralógico del yacimiento, se han escogido cuatro muestras (SE-2ª-1 a SE-2ª-4), correspondiéndose con cada uno de los niveles anteriormente citados.

La granulometría (tabla VI.33) de las muestras estudiadas es bastante semejante con porcentajes muy altos en fracciones gruesas y con escasez prácticamente total de la fracción \(< 2 \mu\). (No medible con el procedimiento utilizado para el análisis granulométrico).

Se han analizado las fracciones \(< 20 \) y \(< 63 \mu\).

La mineralogía de las muestras (tabla VI.34) difieren marcadamente en sus porcentajes en micas y kanditas. Los niveles 1 y 4 son micáceos-caoliníferos, mientras el 2 es una arena caolinífera (con el 50 % de caolín, en su estado natural), y el nivel 3 es un granito en incipiente estado de caolinización, conservando aún un 30 % de feldespatos. Son pues, materiales diversos, arrastrados de áreas fuentes de diferente naturaleza y con distintos estados de evolución, cuyas causas habría que buscarlas en los hechos ocurridos cuando estos materiales estaban "in situ", pero imposibles de reconstruir en el estado actual, transportados por meca-
TABLA VI.33.- Mina SAN ESTEBAN 2ª. Análisis Granulométricos. (%)

<table>
<thead>
<tr>
<th>Fracción</th>
<th>SE-2ª-1</th>
<th>SE-2ª-2</th>
<th>SE-2ª-3</th>
<th>SE-2ª-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 μ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>2-6,3 μ</td>
<td>1,25</td>
<td>3,10</td>
<td>0,65</td>
<td>1,05</td>
</tr>
<tr>
<td>6,3-20 μ</td>
<td>3,15</td>
<td>7,85</td>
<td>7,25</td>
<td>3,80</td>
</tr>
<tr>
<td>20-63 μ</td>
<td>9,45</td>
<td>8,30</td>
<td>7,80</td>
<td>15,02</td>
</tr>
<tr>
<td>63-200 μ</td>
<td>13,30</td>
<td>8,82</td>
<td>12,22</td>
<td>17,30</td>
</tr>
<tr>
<td>> 200 μ</td>
<td>72,-</td>
<td>71,-</td>
<td>72,-</td>
<td>62,-</td>
</tr>
</tbody>
</table>

<p>| | 99,15 | 99,07 | 99,92 | 99,17 |</p>
<table>
<thead>
<tr>
<th>Muestra total</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-2ª-1</td>
<td>45</td>
<td>30</td>
<td>20</td>
<td>5</td>
<td>< 5</td>
</tr>
<tr>
<td>SE-2ª-2</td>
<td>25</td>
<td>20</td>
<td>50</td>
<td>5</td>
<td>ind.</td>
</tr>
<tr>
<td>SE-2ª-3</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>ind.</td>
</tr>
<tr>
<td>SE-2ª-4</td>
<td>60</td>
<td>25</td>
<td>10</td>
<td>5</td>
<td>< 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 20 μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-2ª-1</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>ind.</td>
</tr>
<tr>
<td>SE-2ª-2</td>
<td>15</td>
<td>10</td>
<td>70</td>
<td>5</td>
</tr>
<tr>
<td>SE-2ª-3</td>
<td>10</td>
<td>15</td>
<td>70</td>
<td>5</td>
</tr>
<tr>
<td>SE-2ª-4</td>
<td>20</td>
<td>15</td>
<td>65</td>
<td>ind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción < 63 μ</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-2ª-1</td>
<td>35</td>
<td>40</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>SE-2ª-2</td>
<td>15</td>
<td>15</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>SE-2ª-3</td>
<td>20</td>
<td>20</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>SE-2ª-4</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>-</td>
</tr>
</tbody>
</table>

Q = Cuarzo; M = Micas; K = Caolinita; F = Feldespatos
Mo = Esmectitas; ind. = indicios
Fig. 6.25
nismos torrenciales y totalmente desordenados.

Las kanditas existentes, son caolinita parcialmente desordenada (tipo pM-T), con índice de cristalinidad de 0,4, halloysita y metahalloysita. Sus tamaños y formas son semejantes a los descritos en el yacimiento anterior.

De este depósito, sólo sería explotable en estas condiciones el nivel 2, y quizás el nº 3, si es convenientemente lavado y mezclado con el anterior.

El diagrama de DTA (fig. 6.25) realizado sobre la fracción < 20 μm, muestra un endotérmico a 296 °C, debido a cantidades apreciables (no bien detectadas por rayos-X) de gibsita. El exotérmico a 376 °C es originado por la descomposición de los óxidos de hierro. Por tanto, las kanditas son desordenadas y mal cristalizadas concordantes con los resultados de rayos-X y microscopía electrónica.

7.- **EFEKT DEL TRATAMIENTO TERMICO A ALTAS TEMPERATURES SOBRE LA CONSTITUCION Y PROPIEDADES DE ALGUNOS DE LOS MATERIALES ESTUDIADOS**

7.1.- **INTRODUCCION**

Se ha creido conveniente dedicar, dentro del presente estudio, un capítulo a la determinación, sobre algunos de los materiales estudiados previamente, de sus posibles aplicaciones en la industria de los materiales refractarios y establecer una serie de determinaciones, ensayos y estudios que se considera deben de llevarse a cabo, como mínimo, para predecir su aplicación.

Las arcillas refractarias son la base de la manufactura
de los denominados refractarios silicoaluminosos y en cuya fabricación representan el 100 % del material utilizado (CHESTER, 1,973). Ahora bien, con las técnicas hoy día imperantes en la fabricación de refractarios, las arcillas refractarias entran, normalmente, en la manufactura de las piezas, formando parte de su composición como chamotas (*) en su mayor parte, representando como mínimo el 85 % de la composición, siendo el resto la misma arcilla refractaria, en su estado natural, utilizada como aglomerante que da consistencia a las piezas fabricadas antes de su cocción, o bien aglomerantes orgánicos temporales, con el mismo fin, que se destruyen durante la cocción. En cualquier caso, la pieza refractaria obtenida finalmente está constituida en su totalidad por el material resultante de la calcinación, a temperatura elevada y conveniente, de las arcillas refractarias.

Debido a esto es por lo que las determinaciones y estudios a realizar, sobre las materias primas, deben de estar encaminados, fundamentalmente, al estudio de la constitución y propiedades de las arcillas refractarias en su forma de chamotas y para ello se debe estudiar el efecto que los tratamientos térmicos a altas temperaturas tienen sobre la constitución física y mineralógica de estos materiales, que

(*) El término chamota, comúnmente utilizado en la tecnología cerámica y de refractarios, deriva originalmente de la expresión germánica "chamotte" y ha sido universalmente aceptado para denotar una arcilla refractaria que ha sido calcinada, a temperatura conveniente y molido para su uso como constituyente no plástico (árido) de una composición refractaria.
a fin de cuentas, aparte otras variables, tales como la granulometría, etc., son las que determinarán las características de los materiales acabados.

Teniendo en cuenta pues lo expuesto anteriormente, los estudios y ensayos elegidos para realizar han sido los siguientes:

a) Microscopía de alta temperatura que nos pone de manifiesto el comportamiento macroscópico del material frente al efecto del calor, obteniéndose valiosos datos sobre la temperatura de comienzo de la contracción, reblandecimiento y fusión del material, que analizados convenientemente nos dan una idea de la refractariedad del mismo, es decir, de su capacidad de resistencia a la acción de altas temperaturas así como, junto a otras características, de la zona de temperatura a la cual el material puede ser utilizado con seguridad.

b) Densidad aparente y porosidad de los materiales obtenidos después del tratamiento térmico a diferentes temperaturas, que nos suministrará información sobre la estructura del material refractario conectada directamente con las propiedades de resistencia mecánica y de choque térmico, es decir, capacidad de resistir a los bruscos cambios de temperatura, así como de su posible comportamiento a la acción de la penetración de escorias y fundentes.

c) Comportamiento dilatométrico reversible, el cual nos pone de manifiesto las expansiones y contracciones experimentadas por el material durante los ciclos térmicos en su utilización y que no sólo es de interés con vista al diseño de hornos y obras refractarias, con objeto de prevenir juntas de
dilatación, sino también con vista a la fabricación de material refractario, para poder predecir, junto con la porosidad y otras propiedades, la capacidad de resistencia de los materiales frente a los choques térmicos.

Puesto que los factores de expansión dependen de la composición del material y de la temperatura, no siendo significativos los efectos de la densidad, porosidad, resistencia mecánica, etc., las curvas de expansión estarán estrechamente ligadas con la constitución mineralógica del material y pueden alterarse sustancialmente con la temperatura de cocción, por lo que habrán de ser determinadas sobre los materiales tratados térmicamente a diferentes temperaturas.

d) **Constitución mineralógica.** Si bien todas las anteriores características y propiedades de los materiales son de indudable importancia, el conocimiento de la constitución química y mineralógica de los mismos a las temperaturas de servicio son quizás las de mayor significado, puesto que cambios producidos en la mineralogía por acción de la temperatura pueden alterar todo el otro conjunto de propiedades estudiadas. Por este motivo, el conocimiento de su constitución a una temperatura determinada y su evolución al variar ésta, es de la mayor importancia, ya que grandes diferencias de constitución mineralógica al variar la temperatura pueden dar lugar a la creación de tensiones en el interior de las piezas refractarias, máxime si se tiene en cuenta que en servicio las piezas refractarias presentan normalmente un gradiente de temperatura entre su cara de trabajo y el interior de las mismas, que en algunos casos puede ser considerablemente significativo.
e) Estudio de la evolución de la constitución mineralógica a la luz de los diagramas de equilibrio de fases. El porcentaje de fase líquida, desarrollada en un material refractario a altas temperaturas, es de suma importancia en su comportamiento a la deformación plástica a temperatura elevada y la causa de la mayoría de los fallos de los materiales refractarios en servicio.

Si bien el estudio de la constitución mineralógica en función de la temperatura puede seguirse perfectamente bien mediante las técnicas de difracción de rayos-X y microscopía, la evolución y desarrollo cuantitativo de la proporción de fase líquida generada a altas temperaturas no puede ser determinada así. Debido a no disponerse de ningún tipo de ensayo que nos ponga de manifiesto con suficiente garantía el contenido de fase líquida, y que los posibles métodos a utilizar requieren un tiempo y unas condiciones experimentales relativamente complicadas, la aplicación de los conocimientos de los diagramas de equilibrio de fases al estudio de la evolución de aquélla, así como de los constituyentes mineralógicos es de gran interés.

Por otro lado, si bien toda la información suministrada por los diagramas de equilibrio de fases se aplica estrictamente a las condiciones de equilibrio, y éstas raramente se alcanzan en un proceso industrial, su información tiene el valor de mostrarnos las condiciones hacia las que tenderá a evolucionar una determinada composición en función de la temperatura y el tiempo.
7.2.- MATERIALES SELECCIONADOS

Para el estudio del efecto del tratamiento térmico a altas temperaturas sobre la constitución y propiedades, se han elegido dos muestras de la Cuenca de Porriño-Tui y otras dos de la Cuenca de A Guarda.

Estos han sido:

Cuenca Porriño-Tui

a) Material perteneciente a la mina Rogelita.
 Muestra ROG-2, en la fracción menor de 20 μm.

b) Material perteneciente a la mina Mercedes.
 Muestra MER-5, en la fracción menor de 20 μm.

Cuenca de A Guarda

a) Material perteneciente a la mina Santa Tecla.
 Muestra ST (total).

b) Material perteneciente a la mina Ignacia.
 Muestra denominada IGN, caolín lavado comercial.

7.3.- MICROSCOPIA DE ALTA TEMPERATURA

Se ha utilizado esta técnica en orden a estudiar visualmente el comportamiento de los materiales durante la cocción. El procedimiento experimental seguido ha sido el descrito en el apartado correspondiente a materiales y métodos. Las muestras fueron molidas previamente a su ensayo por debajo de 35 μm.

En las figuras 7.1 a 7.4 se reproducen los diferentes estados de las muestras a diversas temperaturas. En ningún caso se llegó a la fusión completa de las muestras por limitaciones impuestas por el horno utilizado, sin embargo teniendo en cuenta otras consideraciones derivadas de los da-
Fig. 7.1. Microscopía de alta temperatura de la muestra ROG. 2.
Fig. 7.2. Microscopía de alta temperatura de la muestra MER.5.
Fig. 7.3. Microscopia de alta temperatura de la muestra ST.
Fig. 7.4. Microscopia de alta temperatura de la muestra IGN.
tos aportados por los diagramas de equilibrio de fases, se considera que la fusión completa tendrá lugar entre los 1.700° y 1.800 °C para todas las muestras estudiadas.

De las microfotografías obtenidas, ampliadas convenientemente, se han medido las contracciones experimentadas por los distintos materiales, tomando para ello la medida de las superficies de las probetas, y a partir de estos datos se han construido las curvas de contracción-temperatura representadas en la figura 7.5. En dicha figura se puede observar que, a partir de los 600 ºC, aproximadamente, en todas las muestras se inicia una contracción que tiende a estabilizarse entre los 900° y 1.000 ºC, y que es mucho más pronunciada, sin embargo, en las muestras MER-5 y ROG-2 que en las muestras ST y IGN. Esta contracción está asociada con la deshidroxilación de las kanditas constituyentes mayoritarios de los materiales estudiados. El que la contracción sea menor en las muestras IGN y ST se debe, en primer lugar, al menor contenido en kanditas de estas muestras con respecto a las otras dos y, en segundo lugar, al mayor contenido de cuarzo en aquéllas que, actuando como material inerte, contrarresta la contracción.

A partir de los 1.000 °C aproximadamente se pone de manifiesto una nueva contracción debida a la formación de una fase líquida, la cual podemos considerar que en estos materiales se inicia alrededor de los 985 °C, como se comprobará más adelante al tratar de la aplicación de los diagramas de equilibrio de fases.

Esta contracción iniciada sobre los 1.000 °C continúa al ir elevando la temperatura como consecuencia del aumento
CURVAS DE CONTRACCIÓN - TEMPERATURA

Fig. 7.5
de la proporción de fase vítrea. En la zona de temperatura entre 1.300° y 1.400 °C tiene lugar, para las muestras IGN, ST y ROG, un nuevo cambio en las pendientes de las curvas de contracción el cual está asociado con el cambio de pendiente de las curvas de contenido de líquido-temperatura (fig. 7.6) obtenidas de la aplicación de los diagramas de equilibrio de fases, si bien las temperaturas están algo desplazadas con respecto a las de estas últimas. Esto es debido, fundamentalmente, a que el estudio por microscopía de alta temperatura es un ensayo dinámico y por lo tanto los equilibrios no se alcanzan más que a temperaturas mucho más elevadas, lo que se ve acentuado por la existencia de cuarzo, relativamente grueso en las muestras IGN y ST, cuya velocidad de disolución es muy lenta.

Se ha de hacer notar que la muestra MER-5 presenta una anomalía en la curva de contracción con un cambio de pendiente alrededor de los 1.400 °C. Este cambio se considera debido a un fenómeno de hinchamiento de la muestra, lo que está de acuerdo con los resultados de las medidas de densidad aparente y porosidad abierta (figura 7.7) como se verá más adelante. Este hinchamiento tiene su origen en el elevado porcentaje de hierro férrico de la muestra (≈ 2,05 %), ya que al elevarse la temperatura el equilibrio

$$\text{Fe}_2\text{O}_3 \rightleftharpoons 2 \text{FeO} + \frac{1}{2} \text{O}_2$$

se desplaza hacia la derecha con desprendimiento de oxígeno, que debido a la alta viscosidad de los líquidos generados en la muestra (contenidos de SiO_2 del orden del 75 %) no pueden salir libremente dando lugar al hinchamiento.

A la vista de los resultados obtenidos, se han elegido
CURVAS DE % FASE LIQUIDA-TEMPERATURA

Fig. 7.6
las temperaturas de 1.300°, 1.400° y 1.500 °C para la coc-
ción de una serie de probetas destinadas a realizar sobre
las mismas el resto de los ensayos y estudios.

7.4.- PREPARACION Y COCCION DE LAS MUESTRAS

De los diferentes materiales sin previo tratamiento se
han preparado por prensado en seco, bajo una presión de
250 Kg/cm², una serie de piezas paralelepípedicas de
50 x 20 x 10 mm. las cuales se han tratado térmicamente, en
un horno de carburo de silicio, a las temperaturas de
1.300°, 1.400° y 1.500 °C, respectivamente. La velocidad de
calentamiento, hasta alcanzar la temperatura deseada, ha si-
do de 5°C/min., y una vez alcanzada ésta, se ha estabilizado
el horno durante dos horas, pasadas las cuales se ha desco-
nectado éste y se han dejado enfriar las muestras dentro
del horno hasta alcanzar la temperatura ambiente.

Sobre las muestras así obtenidas se han realizado los
ensayos y estudios que se exponen a continuación.

7.5.- DENSIDAD APARENTE Y POROSIDAD ABIERTA

Los valores de la densidad aparente y de la porosidad
abierta han sido determinados según se expone en el capítulo
de materiales y métodos.

En la figura 7.7 se representan las curvas de porosidad
y densidad frente a la temperatura respectivamente, para las
cuatro muestras estudiadas.

A la vista de las mismas se puede apreciar, en general,
que a medida que aumenta la temperatura de cocción, va di-
minuyendo la porosidad abierta, como consecuencia de una ma-
CURVAS DE DENSIDAD-POROSIDAD EN FUNCIÓN DE LA TEMPERATURA

ROG-2

MER-5

ST

IGN-1

Fig. 7.7
yor sinterización, y por lo tanto la densidad aparente de los materiales se va incrementando.

Ahora bien, se ha de hacer notar que la muestra MER-5 presenta, sin embargo, ciertas anomalías, no sólo en la curva de densidad-temperatura sino también en la curva de porosidad-temperatura, ya que la pendiente de ésta está invertida con respecto a las de las otras muestras. Esto viene a corroborar la anomalía presentada por esta muestra en la curva de contracción-temperatura (figura 7.5) determinada a partir de los datos de la microscopía de alta temperatura, tal como se expuso en el apartado 3, y en donde se ponía de manifiesto que dicha anomalía era debida a producirse en la muestra un fenómeno de hinchamiento, consecuencia del desplazamiento del equilibrio \(Fe_2O_3 \rightarrow 2FeO + \frac{1}{2} O_2 \) hacia la derecha al elevar la temperatura. En efecto, un fenómeno de hinchamiento dará lugar a una disminución de la densidad aparente por un aumento de la porosidad cerrada. Por otro lado, el aumento de la porosidad cerrada traerá consigo una disminución relativa de la porosidad abierta. La brusca disminución de esta última, haciendo cambiar la pendiente de la curva, se debe pues, a que en este caso sobre la disminución de la porosidad abierta inciden dos factores: a) la disminución debida a una mayor sinterización y b) la disminución relativa por un aumento considerable de la porosidad cerrada; mientras que en el caso de las otras muestras únicamente incide el primer factor.

Otro hecho a resaltar es que si comparamos las muestras ROG-2 y MER-5 frente a las muestras ST y IGN, independiente de los hábitos de las curvas, es decir, comparamos los nive-
les de valores alcanzados, podemos apreciar que las dos primeras presentan valores de densidad considerablemente elevados del orden de 2,6 gr/cm3, mientras que las otras dos presentan valores de tan sólo 2,2 gr/cm3. Este hecho está asociado con la presencia de cuarzo en cantidad appreciable en las muestras ST y IGN y es debido al tamaño relativamente elevado del mismo en estas muestras. En efecto, siendo la velocidad de disolución y transformación del cuarzo muy lenta, ésta se verá considerablemente retardada por un tamaño elevado de los granos. Como consecuencia, el cuarzo quedará en la composición como una fase en exceso, según la teoría de TAMAS (1,970) del cálculo de los índices de equilibrio mientras que el resto del material se puede considerar que alcanza el equilibrio a la temperatura de tratamiento térmico. Ahora bien, al considerar el contenido de cuarzo como una fase prácticamente inerte y por tanto en exceso, el contenido de líquido desarrollado en el resto del material será menor que el previsto por el diagrama de equilibrio correspondiente para la composición total, como consecuencia del desplazamiento de la superficie de sólidos, o lo que es lo mismo, como consecuencia del desplazamiento de la composición total hacia valores de menores contenidos de SiO$_2$ a lo largo de una línea recta que arrancando del vértice de la sílice pasa por el punto de composición total. Este menor desarrollo de líquido traerá consigo una menor sinterización y por lo tanto los valores de densidad y porosidad serán menores en las muestras IGN y ST que en las MER-5 y ROG-2.

Por otro lado, la presencia de cuarzo trae consigo la creación de microgrietas en los granos previa a su transfor-
mación y disolución, al mismo tiempo que se origina alrede-
dor de ellos pequeñas grietas, como consecuencia de las ten-
siones existentes en los bordes de grano, que darán lugar
da un aumento de la porosidad y como consecuencia a una dis-
minución de la densidad. Este efecto se verá corroborado más
adelante al tratar del estudio por microscopía de luz refle-
jada.

7.6.- ESTUDIO DILATOMETRICO

Se ha realizado, según se describe en el apartado de ma-
teriales y métodos, sobre probetas de 50 x 5 x 5 mm. obteni-
das de los diversos materiales después de tratados térmica-
mente según se expuso en el apartado 4 del presente capítu-
lo.

Los valores obtenidos de la dilatación, en tanto por
ciento, se ha representado en función de la temperatura para
los distintos tratamientos térmicos, y para cada una de las
muestras, en las figuras 7.8; 7.9; 7.10 y 7.11.

En las curvas de la figura 7.8, correspondientes a la
muestra ROG-2, se puede observar que entre 100° y 300 °C
tiene lugar una considerable expansión, la cual disminuye
da medida que la temperatura de cocción aumenta y siendo
prácticamente despreciable en la muestra tratada a 1.500 °C/
2 hrs. Esta expansión es debida a la presencia de cristoba-
lita en la muestra (JOURDAIN, 1.966) y (CHESTER, 1.973) la
cual, dependiendo de su perfección cristalina, experimenta
su transformación enanciótrópica $\alpha \rightarrow \beta$ entre 160° y 275 °C
con un cambio de volúmen del 3 %. Si bien la muestra ROG-2
contiene algo de cuarzo, según se puede ver más adelante al
CURVAS DE DILATACION EN FUNCION DE LA TEMPERATURA

ROG 2 (1300 °C/2h)

ROG 2 (1400 °C/2h)

ROG 2 (1500 °C/2h)

Fig. 7.8
tratar del estudio por difracción de Rayos-X y microscopía, su proporción es tan pequeña como para que su transformación enanciotrópica $\alpha \leftrightarrow \beta$ a 575 °C con un cambio de volumen de sólo el 0,8 % (JOURDAIN, 1.966) y (CHESTER, 1.973) no se ponga de manifiesto, y así se puede apreciar que a partir de los 300 °C aproximadamente la dilatación aumenta de una forma lineal en las tres probetas correspondientes a los diferentes tratamientos térmicos.

Por otro lado, se puede observar que la dilatación disminuye a medida que se aumenta la temperatura del tratamiento previo, lo que está de acuerdo con la mayor proporción de una fase vítrea rica en sílice (\simeq 75 %) en la muestra a medida que la temperatura de cocción aumenta.

En la figura 7.9, correspondiente a la muestra MER-5 calcinada a diferentes temperaturas, se puede observar que, en la curva dilatométrica de la muestra cocida a 1.300 °C/2 hrs, presenta una pequeña inflexión entre 100° y 200 °C, la cual desaparece en las curvas correspondientes a las muestras tratadas a 1.400° y 1.500 °C. Aquella es debida a la presencia de una pequeña proporción de cristobalita lo que está de acuerdo con los resultados de difracción de rayos-X, tal como se expondrá más adelante.

Igualmente se puede apreciar que la inflexión de la curva entre 500° y 600 °C, y debida a la presencia de cuarzo en la muestra va disminuyendo a medida que la temperatura de cocción previa aumenta, para ser prácticamente despreciable a 1.500 °C; y que por otro lado la dilatación total va disminuyendo igualmente, con la temperatura de cocción.

En las curvas dilatométricas (figura 7.10) correspon-
CURVAS DE DILATACIÓN EN FUNCIÓN DE LA TEMPERATURA

MER 5 (1300 °C/2 h)

MER 5 (1400 °C/2 h)

MER 5 (1500 °C/2 h)

Fig. 7.9
CURVAS DE DILATACION EN FUNCION DE LA TEMPERATURA

ST (1300 °C/2h)

ST (1400 °C/2h)

ST (1500 °C/2h)

Fig. 7.10
dientes a la muestra ST se puede hacer resaltar que la gran expansión térmica, debida al cambio enanciotrópico \(\alpha \leftrightarrow \beta \) del cuarzo a 575 °C, que se observa en la curva correspondiente a la muestra cocida a 1.300 °C, va disminuyendo progresivamente al aumentar la temperatura, como consecuencia de la disolución del cuarzo en la fase vítrea a más altas temperaturas, tal como se expone más adelante al tratar del estudio de las muestras mediante difracción de rayos-X. Es de hacer resaltar que en la curva correspondiente a la probeta tratada a 1.400 °C / 2 hrs, se puede observar entre 100° y 200 °C un cambio de pendiente debido a la presencia de cristobalita, cuyo cambio se hace más pronunciado en la curva correspondiente a la muestra tratada a 1.500 °C/2 hrs.

Al igual que en los casos anteriores la dilatación disminuye a medida que la temperatura del tratamiento térmico previo aumenta.

Por último en la muestra IGN (figura 7.11) se pueden apreciar los mismos efectos puestos de manifiesto para las muestras estudiadas previamente, es decir una dilatación brusca a 575 °C debido al cambio \(\alpha \leftrightarrow \beta \) del cuarzo, la cual se va haciendo menos intensa al elevar la temperatura de tratamiento térmico, así como el que la dilatación final es menor a medida que se aumenta la temperatura de cocción previa. La curva correspondiente a 1.500 °C presenta, igualmente, entre 100° y 200 °C una expansión debida a la presencia de cristobalita.

Comparativamente se puede apreciar que la muestra ROG-2 presenta la mayor dilatación, en todas las etapas, de todas las muestras estudiadas, lo que se atribuye a su mayor con-
CURVAS DE DILATAción EN FUNCIÓN DE LA TEMPERATURA

IGN (1300°C/2h)

IGN (1400°C/2h)

IGN (1500 °C/2h)

Fig. 7.11
tenido de mullita y cristobalita como se puede ver más ade-
lante al tratar del estudio por difracción de rayos-X. Por
el contrario, la muestra IGN presenta la menor dilatación,
como consecuencia de su menor contenido de mullita y cristo-
balita y la mayor proporción de fase vítrea.

7.7.- ESTUDIO POR DIFRACCION DE RAYOS-X

Se ha realizado por el método de polvo según se expone
en el capítulo de materiales y métodos. Para poder hacer un
estudio comparativo entre las diferentes muestras, si bien
no cuantitativo, se ha procedido a mezclar en todas ellas
0,5 gramos de fluorita por cada dos gramos de muestra, con
objeto de disponer de un patrón interno constante al que re-
ferir las intensidades de los picos de difracción tomados
como fundamentales para cada una de las fases cristalinas
y poder estudiar la evolución de la fase deseada al ir ele-
vandolo la temperatura de tratamiento térmico. Así pues, los
valores de la relación de intensidades I/I_p, en unidades ar-
bitrarias, en donde I es la intensidad de la difracción to-
mada como fundamental para una determinada fase cristalina
 e I_p la intensidad de la difracción (111) con valor de
3,15 Å para la fluorita, se han llevado frente a la tempera-
tura de tratamiento térmico y se han construido, para las
diferentes muestras en estudio, las curvas expuestas en las
figuras 7.12, 7.13, 7.14 y 7.15 para las distintas especies
mineralógicas identificadas en las muestras.

Las difracciones tomadas como fundamentales para seguir
la evolución de las distintas fases cristalinas han sido:
Mullita (3Al_2O_3·2SiO_2). Se han tomado dos efectos de difrac-
ROG 2

EVOLUCION DE LAS FASES CRISTALINAS
EN FUNCIÓN DE LA TEMPERATURA

Fig. 7.12
MER 5

EVLUCION DE LAS FASES CRISTALINAS
EN FUNCION DE LA TEMPERATURA

Fig. 7.13
Evolución de las fases cristalinas en función de la temperatura

Fig. 7.14
IGN

EVOLUCION DE LAS FASES CRISTALINAS
EN FUNCIÓN DE LA TEMPERATURA

Fig. 7.15
ción: el correspondiente al (110) con valor de 5,39 Å y el (210) con valor de 3,39 Å, representados respectivamente en las figuras citadas por I^*_M e I_M.

α-Cuarzo (α-SiO$_2$). Se ha utilizado la difracción fundamental correspondiente al plano principal (101) con valor de 3,34 Å. En las figuras representadas por I_Q.

α-Cristobalita (α-SiO$_2$). Se ha empleado la difracción correspondiente al plano principal (101) con valor de 4,05 Å. En las figuras representadas por I_C.

A la vista de las curvas obtenidas se puede establecer que:

a) El contenido de cuarzo libre es menor en la muestra ROG-2 y es máximo en las muestras ST e IGN, estando en una proporción media en la muestra MER-5.

b) La "disolución" del cuarzo empieza para todas las muestras hacia los 1.100 °C y se acelera considerablemente hacia los 1.300 °C, no quedando prácticamente cuarzo residual a 1.500 °C en la muestra ROG-2 y muy poco en la muestra MER-5, mientras que es relativamente alto su contenido a 1.500 °C en la muestra ST y muy alto en la muestra IGN. Esto está de acuerdo con el hecho de que si ya de por sí la disolución del cuarzo es muy lenta en los líquidos generados por los materiales de tipo arcilloso (líquidos muy viscosos con alto contenido en SiO$_2$ del orden del 75 %), su disolución se ve, en este caso, considerablemente retardada por un tamaño de grano relativamente grande, tal como sucede en las muestras ST e IGN.

La elevada pendiente que presenta la curva de "disolución" del cuarzo en la muestra MER-5 es debida a que, entre
1.100 °C y 1.400 °C, se superponen dos fenómenos: a) disolución del cuarzo en el líquido formado y b) transformación simultánea del mismo en cristobalita, mientras que en las muestras IGN y ST el primer estadio hasta 1.300 °C aproximadamente corresponde únicamente a la lenta disolución del cuarzo en el líquido formado a temperatura elevada.

En la muestra ROG-2, en donde la pendiente de la curva de "disolución" del cuarzo no es muy elevada, es de prever que el mecanismo que predomine, en el margen de temperatura de 1.100° a 1.300 °C, sea el debido a la transformación en cristobalita, lo que se confirma por la elevada pendiente que presenta la curva de ésta, mientras que la disolución del cuarzo en el líquido será mínima debida a la baja proporción de éste, tal como se ve confirmado por las curvas teóricas de contenido de líquido-temperatura (figura 7.6) deducidas de la aplicación de los diagramas de equilibrio de fases.

c) La evolución de la fase cristobalítica es la que presenta más diferencias de unas muestras a otras; pues mientras que en las muestras ST e IGN no empieza a nuclear hasta los 1.300 °C, aproximadamente, en las muestras ROG-2 y MER-5 la nucleación tiene lugar ya a los 1.100 °C.

La nucleación de cristobalita a tan bajas temperaturas está asociada con la existencia de una sílice altamente reactiva o amorfa, mientras que su formación a partir de sílice no alterada tiene lugar únicamente a temperaturas del orden de 1.300 °C ó por encima, tal como sucede en las muestras ST e IGN. El que en las muestras ROG-2 y MER-5 tenga lugar su aparición hacia los 1.100 °C está de acuerdo con
la observación realizada, en el estudio de estos materiales, de una importante meteorización química, lo que puede haber dado lugar a una amorización superficial de los granos de cuarzo que, junto con su pequeño tamaño de grano, justifica su fácil transformación a cristobalita a tan bajas temperaturas.

d) El máximo desarrollo de mullita tiene lugar en la muestra ROG-2, es del mismo orden en las muestras MER-5 y ST y mínimo en la muestra IGN. Este hecho está de acuerdo con los cálculos y predicciones teóricas, como veremos más adelante, al tratar de la aplicación de los diagramas de equilibrio de fases en estos materiales.

Las curvas de la evolución de la fase mullita presenta, en todas las muestras, tres cambios de pendiente bien diferenciados, lo que se corresponde con otros tantos fenómenos diferentes durante la evolución de dicha fase. Un primer estadio de nucleación de los gérmenes cristalinos, que se extiende desde los 1.000° a 1.100 °C, aproximadamente, un segundo estadio de crecimiento que va desde los 1.100 °C hasta los 1.300 °C y un tercer estadio, correspondiente al perfeccionamiento de los cristales de mullita, por encima de los 1.300 °C y que se extiende hasta casi los 1.500 °C, si bien en algunas muestras, tales como la ST y la IGN, tiene lugar hacia los 1.400 °C un comienzo de disolución de dicha fase en la fase líquida.

7.8.- **ESTUDIO MICROESTRUCTURAL**

Se ha realizado mediante microscopía de luz reflejada, según se expuso en el apartado de materiales y métodos, con
el objetivo prioritario de poder observar la microestructura generada en las muestras durante los diferentes tratamientos térmicos.

Se ha podido poner así de relieve la considerable abundancia de cuarzo en las muestras ST e IGN (figuras 7.16 y 7.17) y el tamaño relativamente elevado de éste, mientras que en la muestra MER-5 el cuarzo existente es de muy pequeño tamaño de grano (figura 7.18) y en la muestra ROG-2 prácticamente no existe.

El cuarzo existente en las muestras ST e IGN, previa a su disolución y transformación sufre una gran alteración, presentando gran cantidad de grietas, como se pone de manifiesto claramente en las figuras 7.16 y 7.17 ya citadas, que contribuyen a generar una elevada porosidad en las muestras, lo que confirma los resultados obtenidos de la porosidad y densidad aparente en el apartado 5. Igualmente se ha podido observar que al ir subiendo la temperatura a 1.300 °C ya es apreciable la disolución de los granos de cuarzo en las muestras ST e IGN (figuras 7.19 y 7.20) pero al mismo tiempo se crea alrededor de estos granos en disolución una serie de grietas, que contribuyen a incrementar la porosidad, y que tienen su origen en las tensiones generadas, durante el enfriamiento del material, debido a las diferencias existentes entre sus coeficientes de dilatación.

En las muestras MER-5 y ROG-2 se ha podido observar la existencia de una especie de agregados, que confirman lo expuesto en el estudio e identificación de las muestras, y que sinterizan sin desarrollar prácticamente porosidad alguna (figuras 7.21 y 7.22), lo que confirma los bajos valores de
porosidad y altos valores de densidad alcanzados en estas muestras, como se puso de manifiesto en el apartado 5 del presente capítulo. Dichos agregados, probablemente de naturaleza caolinítica y de gran pureza, están aglomerados por una matriz arcillosa más suelta, en donde se genera fundamentalmente la porosidad. Al ir subiendo la temperatura dichos agregados llegan a soldarse a través de la matriz formando un todo contínuo con una porosidad localizada en la zona de unión de los agregados, como puede apreciarse en la microfotografía de la figura 7.23, sin embargo al llegar a 1.500 °C, se empieza a generar una microporosidad en los agregados densos.

En todas las muestras se ha podido identificar a la temperatura de 1.300 °C, muy pequeños cristales de mullita, los cuales al ir subiendo la temperatura aumentan considerablemente de tamaño. Es de hacer resaltar que en las muestras MER-5 y ROG-2 se han podido detectar marcadas diferencias, para una misma temperatura, entre el tamaño de los cristales de mullita generados en la zona que denominábamos matriz y aquéllos desarrollados en los agregados densos, siendo de mayor tamaño aquéllos, posiblemente como consecuencia de un contenido mayor de líquido en la fase matriz al estar acumuladas en ésta las micas y otras impurezas tal como se expone en la figura 7.24.

En general los resultados y conclusiones obtenidos vienen a confirmar los datos expuestos en los apartados previos de este capítulo, así como los puestos de manifiesto al tratar del estudio e identificación de los materiales en estudio.
Fig. 7.16. Muestra ST cocida a 1300°C/2 horas. Gran cantidad de granos de cuarzo y elevada porosidad. Ataque con vapor de FH (x 210).

Fig. 7.17. Abundantes granos de cuarzo y porosidad elevada en la muestra IGN cocida a 1300°C/2 horas. Ataque con FH vapor. (x 210).
Fig. 7.18. Muestra MER-5 cocida a 1300°C/2 horas. Muy pequeños cristales de cuarzo y pequeños cristales de magnetita (Fe₃O₄). Zona de matriz correspondiente a la marcada con un recuadro en la fotografía (Fig. 8.8.VI.) ataque con FH vapor (x 210).

Fig. 7.19. Muestra ST cocida a 1300°C/2 horas. Se puede observar el comienzo de la disolución de los granos de cuarzo y las grietas generadas alrededor de los mismos. En el centro de la foto se puede ya observar la presencia de agujas de mullita. Ataque con FH vapor (x 630).
Fig. 7.20. Muestra IGN cocida a 1400°C/2 horas. Mostrando dos granos de cuarzo en disolución alrededor de los cuales se han generado grietas y una zona alta en sílice, donde la disolución ha sido completa. Se puede observar la mullitización del resto del material. Ataque FH vapor (x 650).

Fig. 7.21. Muestra MER-5 cocida a 1400°C/2 horas poniendo de manifiesto la existencia de agregados sin porosidad prácticamente aglomerados por una matriz arcillosa más porosa. Ataque FH vapor (x 53).
Fig. 7.22. Muestra ROG-2 cocida a 1400°C/2 horas poniendo de manifiesto la existencia de agregados sin porosidad prácticamente, aglomerados por una matriz arcillosa más porosa. Sin ataque (x 53).

Fig. 7.23. Muestra ROG-2 cocida a 1400°C/2 horas poniendo de manifiesto la sintetización de dos agregados a través de la matriz porosa formando un todo continuo. Ataque FH vapor (x 338).
Muestra MER-5 cocida a 1.500°C/2 horas. Microfotografías obtenidas para poner de manifiesto la diferencia existente en el tamaño de los cristales de mullita entre los desarrollados dentro de los agregados y en la zona matriz.
7.9. - APLICACION DE LOS DIAGRAMAS DE EQUILIBRIO DE FASES

En el epígrafe (e) del apartado 1 del presente capítulo se ponía de manifiesto que el porcentaje de fase líquida desarrollada a altas temperaturas en un material refractario es de suma importancia con respecto a la deformación plástica de estos materiales y la causa de la mayoría de los fallos de los refractarios en condiciones de servicio. Igualmente se exponía que no habiendo un método experimental apropiado para su determinación, la aplicación de los conocimientos de los diagramas de equilibrio de fases al estudio de la evolución de aquella, así como de los constituyentes mineralógicos es de suma utilidad.

La información que nos brinda un diagrama de equilibrio es: (a) la constitución mineralógica del producto a cualquier temperatura; (b) la temperatura inicial de formación de líquido; (c) la variación del contenido de líquido y de la composición del mismo con la temperatura; (d) la solubilidad química de un componente o fase en otro a diversas temperaturas y (e) la proporción en peso de las diferentes fases en equilibrio a cualquier temperatura.

Sin embargo, se debe de tener en cuenta que toda la información se aplica estrictamente a las condiciones de equilibrio y que debe de considerarse cualquier alejamiento de tales condiciones. Ahora bien, los materiales refractarios suelen estar sometidos a altas temperaturas durante toda su vida en uso, por lo que a todos los propósitos prácticos tenderán a comportarse como composiciones en equilibrio y es en este sentido en el que las conclusiones sacadas del estudio de los diagramas de equilibrio tienen el mayor va-
lor, al mostrarnos las condiciones hacia las que tenderá a evolucionar una determinada composición en función de la temperatura.

Por otra parte, los estudios sobre diagramas de equilibrio en los materiales refractarios son complejos, debido a la presencia en dichos materiales de al menos cinco componentes en mayor o menor proporción, por lo que no es posible representar dichas relaciones en un diagrama simple. Sin embargo, a menudo es posible seleccionar dos o tres componentes de un producto refractario, los cuales representan la casi totalidad de la composición, y así un problema dado puede reducirse al estudio de un diagrama binario o ternario.

En el caso que nos ocupa, ha sido demostrado por diversos autores (KINGERY, 1.960, DE AZA, 1.972 y ESPINOSA Y COL, 1.973) la utilidad del sistema $\text{SiO}_2-\text{Al}_2\text{O}_3-\text{K}_2\text{O}$, para predecir las fases y evolución de éstas con la temperatura en muy diversos materiales, tales como porcelanas, refractarios silicoaluminosos, arcillas caoliníticas, etc.

Para ello, se suele acumular el porcentaje de K_2O suministrado por el análisis químico, los porcentajes de los otros óxidos normalmente presentes (Fe_2O_3, FeO, TiO$_2$, CaO, MgO y Na$_2$O), considerados como impurezas (fundentes) y así reducir el problema al mencionado diagrama $\text{SiO}_2-\text{Al}_2\text{O}_3-\text{K}_2\text{O}$.

Sin embargo, si se tiene en cuenta que la mullita puede contener a alta temperatura cantidades variables de Fe_2O_3 y TiO$_2$ en solución sólida, como ha sido puesto de manifiesto por diversos autores (McGEE, 1.966 y KONOPICKY y col, 1.968), y que si bien la cantidad de ambos en solución sóli-
TABLA VII.1

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>IGN</th>
<th>ROG-2</th>
<th>MER-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55,50</td>
<td>54,46</td>
<td>53,17</td>
<td>52,91</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>41,79</td>
<td>40,07</td>
<td>44,01</td>
<td>42,25</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,09</td>
<td>0,73</td>
<td>0,91</td>
<td>1,23</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0,30</td>
<td>0,73</td>
<td>1,01</td>
<td>2,05</td>
</tr>
<tr>
<td>FeO</td>
<td>0,39</td>
<td>---</td>
<td>0,13</td>
<td>0,19</td>
</tr>
<tr>
<td>MgO</td>
<td>0,58</td>
<td>0,32</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CaO</td>
<td>---</td>
<td>0,48</td>
<td>0,13</td>
<td>0,11</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,17</td>
<td>0,34</td>
<td>0,02</td>
<td>0,11</td>
</tr>
<tr>
<td>K₂O</td>
<td>1,09</td>
<td>2,86</td>
<td>0,58</td>
<td>1,13</td>
</tr>
</tbody>
</table>

TABLA VII.2

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>IGN</th>
<th>ROG-2</th>
<th>MER-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55,99</td>
<td>55,27</td>
<td>54,11</td>
<td>53,89</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>42,16</td>
<td>40,67</td>
<td>44,79</td>
<td>43,03</td>
</tr>
<tr>
<td>K₂O</td>
<td>1,85</td>
<td>4,06</td>
<td>1,09</td>
<td>3,07</td>
</tr>
</tbody>
</table>

177
da varía con la temperatura, ésta lo hace entre estrechos límites, por lo que se puede considerar, sin grandes errores, un valor promedio de 0,8 % Fe₂O₃ y 0,95 % TiO₂ entre 1.000 °C y 1.700 °C, aproximadamente en solución sólida en la mullita, es por lo que se ha creído más razonable y exacto no acumular la totalidad de los óxidos considerados como impurezas al contenido de K₂O, sino que previamente se deben de deducir los porcentajes promedios de Fe₂O₃ y TiO₂ considerados en solución sólida en la mullita y una vez realizado ésto, acumular el resto al contenido de K₂O.

Así partiendo de los análisis químicos para los productos calcinados expuestos en la tabla VII.1 y teniendo en cuenta las observaciones realizadas, se han reducido aquéllos a los tres componentes considerados fundamentales SiO₂, Al₂O₃ y K₂O, quedando sus composiciones reducidas tal como se expone en la tabla VII.2.

Los datos reducidos así obtenidos se han llevado al diagrama de equilibrio SiO₂-Al₂O₃-K₂O, quedando así localizadas, en dicho diagrama, las diferentes muestras estudiadas, tal como se expone en la figura 7.25 (OSBORN, E.F. y MUAN, A. 1.960), y a partir de la misma se ha calculado la evolución para cada muestra, de las distintas fases al ir elevando la temperatura y se han construido las figuras 7.26; 7.27; 7.28 y 7.29.

Diversos hechos son aparentes a partir de esta representación gráfica:
a) Que para todas las muestras, la formación inicial de una fase líquida tendrá lugar a la temperatura de 985 °C, que es la correspondiente al punto invariant del subsistema
CURVAS DE % FASES EN FUNCIÓN DE LA TEMPERATURA
MER 5

Fig. 7.27
CURVAS DE % FASES EN FUNCIÓN DE LA TEMPERATURA

ST

Fig. 7.28
CURVAS DE % FASES EN FUNCIÓN DE LA TEMPERATURA
IGN

Fig. 7.29
\(\text{SiO}_2 \) -Ortosa-Mullita, dentro de cuyo triángulo de compatibilidad en estado sólido están situadas todas las muestras en estudio.

Este dato concuerda estrechamente con el obtenido del estudio de las muestras por microscopía de calefacción, en donde se puso de manifiesto que alrededor de los 1.000 \(^\circ\)C aproximadamente, todas las muestras presentaban el comienzo de una contracción elevada y atribuida a la formación de una fase líquida.

b) Que si bien todas las muestras presentan la misma temperatura de primera formación de líquido, la evolución de éste con la temperatura varía, grandemente, de unas muestras a otras, aún para pequeños cambios de composición, tal como se pone en evidencia gráficamente en la figura 7.6 en donde se ha representado, para todas las muestras, para una mejor comparación, la evolución del tanto por ciento de fase líquida en función de la temperatura. Esto nos lleva a hacer resaltar el hecho, bien conocido empíricamente por los refractaristas, de que muy pequeñas diferencias en el contenido de alcalinos pueden ejercer efectos desastrosos sobre los materiales sílicoaluminosos a base de arcillas refractarias.

Así es posible observar que la muestra ROG-2, con el menor contenido de alcalinos de todas las muestras estudiadas, es la que representa el menor contenido de fase líquida a cualquier temperatura, y si bien a temperaturas superiores a los 1.450 \(^\circ\)C, aproximadamente, las diferencias en el contenido de líquido entre las distintas muestras no es muy elevado, en la zona comprendida entre 985 \(^\circ\)C principio de
la formación de líquido y 1.450 °C las diferencias son muy acusadas. Así por ejemplo a 1.300 °C la muestra ROG-2 contiene únicamente un 22 % de fase líquida mientras que la muestra IGN llega a contener 52 %, la muestra ST un 38 % y la muestra MER-5 un 46 %.

c) Que el mayor contenido de mullita, para cualquier temperatura corresponde a la muestra ROG-2, siendo muy similares los contenidos para las muestras ST y MER-5 y mínimo para la muestra IGN, lo que, haciendo caso omiso de la evolución y teniendo en cuenta los porcentajes absolutos a cualquier temperatura, está de acuerdo con los resultados generales deducidos del estudio por difracción de rayos-X.

d) Por último, se puede observar que la muestra ROG-2 únicamente estará exenta de sílice (cristobalita) por encima de 1.450 °C, mientras que la muestra ST lo estará ya a 1.400 °C y las muestras MER-5 e IGN a 1.200 °C.

7.10. - RESULTADOS

A la vista de las consideraciones expuestas en el estudio de los diferentes materiales, se puede indicar que:

De todos los materiales estudiados el denominado ROG-2 es el de más alta calidad para la producción de materiales refractarios silicoaluminosos, pudiéndose aplicar en la manufactura de los materiales, clasificados según la norma UNE 61-014-75 como, REFRACTARIOS SILICOALUMINOSOS DEL 43-45 % DE Al₂O₃, CLASE_a y cuyas características generales se dan en la tabla VII.3.

La muestra ROG-2 cumple todas las características expuestas en la mencionada tabla y únicamente hay que hacer
TABLA VII.3.- Características generales de los refractarios silicoaluminosos de 43-45 % de Al₂O₃.

NORMA UNE 61.014.75 (extractada)

<table>
<thead>
<tr>
<th></th>
<th>Clase a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de Al₂O₃ valor medio</td>
<td>43-45 %</td>
</tr>
<tr>
<td>" " " " " mínimo aislado</td>
<td>42 %</td>
</tr>
<tr>
<td>Contenido de Fe₂O₃ valor medio máximo</td>
<td>2,0 %</td>
</tr>
<tr>
<td>" " " " " máximo aislado</td>
<td>2,2 %</td>
</tr>
<tr>
<td>Contenido de CaO MgO valor medio máximo</td>
<td>0,5 %</td>
</tr>
<tr>
<td>" " " " " máximo aislado</td>
<td>0,6 %</td>
</tr>
<tr>
<td>Contenido de Na₂O K₂O valor medio máximo</td>
<td>1,2 %</td>
</tr>
<tr>
<td>" " " " " máximo aislado</td>
<td>1,4 %</td>
</tr>
<tr>
<td>Densidad aparente valor medio mínimo</td>
<td>2,2 %</td>
</tr>
<tr>
<td>" " " " " mínimo aislado</td>
<td>2,15%</td>
</tr>
<tr>
<td>Porosidad, valor medio máximo</td>
<td>17 %</td>
</tr>
<tr>
<td>" " " máximo aislado</td>
<td>20 %</td>
</tr>
<tr>
<td>Choques térmicos valor medio mínimo</td>
<td>25 %</td>
</tr>
<tr>
<td>" " " " mínimo aislado</td>
<td>22 %</td>
</tr>
<tr>
<td>Refractariedad</td>
<td>1.755 ºC</td>
</tr>
</tbody>
</table>
la salvedad de que la resistencia a los choques térmicos de los productos fabricados con dicho material será muy inferior a los 25 ciclos que dicha norma exige, si no se evita, en la calcinación del material, la presencia de cristobalita, lo que nos lleva a establecer que la temperatura de calcinación en la obtención de chamotas habrá de ser del orden de los 1.500 °C.

La muestra MER-5 puede encontrar aplicación en la fabricación de materiales refractarios de más baja calidad que los obtenidos con la muestra ROG-2, pudiéndose dedicar a la fabricación de los materiales clasificados según la norma UNE 61.015.75 como REFRACTARIOS SILICOALUMINOSOS DEL 41-43 % Al₂O₃ CLASE a ó b (tabla VII.4), si bien debido a su alto contenido en alcalinos está en el límite a la clase a.

Por otro lado, la muestra MER-5, debido a la presencia de cristobalita a muy bajas temperaturas, tal como sucedía en la muestra ROG-2, debe de ser calcinada a 1.400 °C, con objeto de que las piezas fabricadas con dicho material puedan cumplir con el valor del choque térmico exigido en la mencionada norma.

La muestra ST puede aplicarse, al igual que la MER-5, en la manufactura de los mismos materiales indicados por la norma UNE 61.015.75.

Se ha de indicar, sin embargo, que este material se ha estudiado como fracción total, por lo que sería conveniente aplicarle un lavado previo y aprovechar la fracción < 20 μm, que representa el 52 % aproximadamente del total, con lo que disminuiría notablemente el contenido de feldespato, micas y cuarzo. En este caso es de prever que se obtenga un mate-
TABLA VII.4

Características generales de los refractarios silicoaluminosos del 41-43 % de Al\(_2\)O\(_3\)

NORMA UNE 61.015.75 (extractada)

<table>
<thead>
<tr>
<th></th>
<th>Clase a</th>
<th>Clase b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de Al(_2)O(_3) valor medio</td>
<td>42-43 %</td>
<td>41-43 %</td>
</tr>
<tr>
<td>" " " " " mínimo aislado</td>
<td>40 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Contenido de Fe(_2)O(_3) valor medio máximo</td>
<td>2,0 %</td>
<td>2,5 %</td>
</tr>
<tr>
<td>" " " " " máximo aislado</td>
<td>2,2 %</td>
<td>2,7 %</td>
</tr>
<tr>
<td>Contenido de CaO MgO valor medio máximo</td>
<td>0,5 %</td>
<td>0,7 %</td>
</tr>
<tr>
<td>" " " " " máximo aislado</td>
<td>0,6 %</td>
<td>0,9 %</td>
</tr>
<tr>
<td>Contenido de Na(_2)O K(_2)O valor medio máximo</td>
<td>1,2 %</td>
<td>1,4 %</td>
</tr>
<tr>
<td>" " " " " máximo aislado</td>
<td>1,4 %</td>
<td>1,6 %</td>
</tr>
<tr>
<td>Densidad aparente valor medio mínimo</td>
<td>2,15%</td>
<td>1,05%</td>
</tr>
<tr>
<td>" " " " " mínimo aislado</td>
<td>2,20%</td>
<td>2,00%</td>
</tr>
<tr>
<td>Porosidad, valor medio máximo</td>
<td>17 %</td>
<td>22 %</td>
</tr>
<tr>
<td>" " " máximo aislado</td>
<td>22 %</td>
<td>27 %</td>
</tr>
<tr>
<td>Choques térmicos valor medio mínimo</td>
<td>25 %</td>
<td>25 %</td>
</tr>
<tr>
<td>" " " mínimo aislado</td>
<td>22 %</td>
<td>22 %</td>
</tr>
<tr>
<td>Refractariedad</td>
<td>1.730 °C</td>
<td>1.730 °C</td>
</tr>
</tbody>
</table>
rial de las mismas o mejores características del denominado ROG-2, con la ventaja de no generar tan fácilmente cristobalita durante su cocción.

La muestra IGN en el estado que se ha estudiado, como muestra "lavada industrialmente", no encuentra aplicación a la fabricación de ningún tipo de material refractario silicoaluminoso comprendido dentro de las normas UNE y únicamente se prevé su utilización en la fabricación de materiales antiácidos para temperaturas de trabajo hasta 1.200 °C.

Es de hacer notar que tal como muestran los análisis granulométricos y mineralógicos en la muestra lavada por debajo de 20 μm la presencia de micas bajan del 25 % al 15-10% con lo que disminuirá notablemente el contenido de alcalinos de la muestra, principal impureza causante de su baja refractariedad, lo que haría posible su aplicación como material refractario dentro de los contemplados en la norma UNE 61.015.75 ya mencionada.

8.- CONSIDERACIONES FINALES Y CONCLUSIONES

Como resultado de las investigaciones que anteceden sobre la geología de las áreas caolinizadas de la provincia de Pontevedra y sobre la mineralogía y tecnología de los principales depósitos de arcillas caoliníferas, se ha llegado a las siguientes conclusiones:

A) Geología y geografía

- Los depósitos caoliníferos característicos de la provincia de Pontevedra son de dos tipos:
 a) Depósitos formados por meteorización sobre rocas graníticas s.l. y metamórficas de carácter ácido.
b) Depósitos sedimentarios en cuencas continentales terciarias y cuaternarias.

- Existen formaciones caoliníferas de origen hidrotermal, asociadas a diques metalíferos con pequeñas extensiones y falta de interés económico y representación a escala provincial.

- Las masas graníticas caolinizadas más importantes son los granitos gneísicos de dos micas, los granitos gneísicos migmatíticos, los granitos granudos de dos micas y los granitos porfiroides con biotita.

La meteorización ha sido más intensa en los materiales de textura porfídica y en relación con fracturas y diques.

- Los depósitos terciarios continentales rellenan preferentemente depresiones tectónicas. Están constituídos por conglomerados, arenas y limos y son los productos de alteración meteórica de las rocas circundantes (plutónicas y metamórficas ácidas) erosionadas normalmente durante etapas rexistásicas.

- Los materiales cuaternarios están constituídos por gravas, arenas y arcillas. Constituyen depósitos de playas, costeros o aluviales. Su procedencia es la misma indicada para los materiales terciarios, si bien el transporte ha sido fundamentalmente fluvial (o torrencial). En algunos casos han sido movilizados por fenómenos de solifluxión.

- Las principales áreas caoliníferas están situadas en:
 - Cuenca de Porriño-Tui
 - Cuenca de A Guarda-O Rosal-Tomiño
 - Área de Dena-Sanxenxo-O Grove
- Area de A Estrada-Valga
- Area de Nigrán
- Area de Salvaterra do Miño

B) Mineralogía

- Los yacimientos neógenos y cuaternarios de caolín están constituidos por: caolinita, halloysita, cuarzo, micas (moscovita e illita fundamentalmente) y feldespatos potásicos como minerales esenciales y siempre presentes y por montmorillonita, gibbsita, clorita, alofana, diásforo e interes-tratificados de minerales de la arcilla, como minoritarios y no siempre presentes al mismo tiempo.

- Los caolines situados "in situ" y formados por meteorización presentan igual mineralogía que los neógenos y cuaternarios, si bien existen pequeñas diferencias en cuanto a las características cristaloquímicas de las kanditas y a la presencia de minerales minoritarios. Son más abundantes en estos depósitos la clorita, montmorillonita y sus interes-tratificados mixtos y menos abundantes los hidróxidos y geles de aluminio y la alofana.

- Es muy frecuente la presencia de cantidades apreciables de hematites y goethita, especialmente concentradas en algunos niveles de los depósitos sedimentarios, donde pueden alcanzar hasta el 20 %.

 En ciertos niveles de los depósitos sedimentarios, existe una gran concentración de TiO₂, preferentemente en forma de anatasa, pero también como rutilo.

 En las cuencas sedimentarias terciarias son frecuentes los niveles de lignitos y la presencia de materia orgánica
en las arcillas y arenas próximas, proporcionando las tonalidades negras y grises que junto con los niveles rojos impregnados de óxidos de hierro y las arenas caoliníferas blancas, dan las características visuales típicas de las cuencas sedimentarias terciarias.

- Las kanditas presentes en estos depósitos son caolinita y halloysita. Las caolinitas son normalmente desordenadas (próximas al tipo pM), con bajo índice de cristalinidad (índice de Hinckley alrededor de 0,4), pequeño tamaño de partículas (0,1–0,3 μm) y morfología subredondeada o subhexagonal. La halloysita es de forma tubular, más o menos enrollada formando haces de gran grosor. La longitud de los tubos puede alcanzar hasta las 2 μm, aunque normalmente son del orden de la micra. La halloysita se encuentra en distintos estados de hidratación pero predomina la halloysita deshidratada (metahalloysita).

- En los yacimientos "in situ" se ha observado una disminución en los porcentajes de halloysita respecto a los sedimentarios y una mayor cristalinidad de las caolinitas (índice de Hinckley 0,7) pero no un mayor tamaño de partícula.

- En las secuencias sedimentarias se ha observado una disminución de techo a muro en los porcentajes de halloysita y un incremento de la cristalinidad de la caolinita en este mismo sentido, lo que evidencia la mayor evolución de los niveles inferiores.

Los niveles más modernos contienen además cuarzo en fracciones muy finas, que son productos resultantes de una intensa meteorización del área fuente con niveles ya madu-
ros.

En general, la caolinita de los niveles arenosos es de mejor cristalinidad y ordenación que la de los niveles arcillosos.

Estos hechos de tipo mineralógico y granulométrico son útiles para la correlación entre las distintas secuencias sedimentarias estudiadas, pudiéndose establecer una datación relativa entre ellas y su grado de evolución.

C) Tecnología

- Los caolines de tipo meteórico y los niveles arenosos de las series sedimentarias, especialmente de las cuaternarias, con contenidos en kanditas superiores al 15 % pueden dar lugar a la producción de caolines lavados. Los restantes niveles arcillosos o arcillo-arenoso sedimentarios pueden ser usados bien en su forma natural o bien lavados como arcillas de tipo refractario.

Las arcillas refractarias son en general de tipo fire-clay, pero en la cuenca de Porriño-Tui existen algunos niveles de arcillas plásticas, con materia orgánica, que deben ser considerados como de tipo ball-clay.

- De los estudios tecnológicos realizados sobre algunas de las arcillas tipo ball-clay de la cuenca de Porriño-Tui (minas Mercedes y Rogelita) y sobre la arcilla tipo fire-clay de Santa Tecla y el caolín lavado industrialmente de la mina Ignacia, se puede deducir, que la muestra ROG-2 corresponde a la mina Rogelita es la de más alta calidad para la producción de refractarios silicoaluminosos, siguiéndole en importancia la muestra ST perteneciente al yacimiento de
Santa Tecla y la muestra MER-5 de la mina Mercedes en este orden. Sin embargo la muestra IGN de la mina Ignacia si bien, en su estado actual de "caolín lavado industrialmente" no es apropiada para la producción de materiales refractarios silicoaluminosos sí que lo es para la producción de materiales de grés antiácido. Tanto la muestra ST como la IGN convenientemente lavadas pueden dar lugar a materiales de más alta calidad, fundamentalmente la primera, llegando incluso a superar en calidad a la muestra ROG-2.

D) Economía

- Los principales municipios con denuncios de caolín, en cuanto al número, son Porriño, Tui, A Guarda, Tomiño, Salceda de Caselas, Sanxenxo, Noalla, Dena, Valga y Ponteareas. En total existen unos 200 denuncios para caolín y/o arcillas refractarias caolíníferas en la provincia de Pontevedra, de los cuales sólo 60 han estado en activo.

Actualmente (1.980), los denuncios explotados están agrupados en cuatro grupos mineros, localizados en las cuencas de Porriño-Tui y de A Guarda. La producción total es de unas 100.000 Tm, comercializadas normalmente bajo la denominación de arcillas refractarias y valoradas en unos 51 millones de pesetas. Sólo en la mina Ignacia de A Guarda se obtiene esporádicamente una pequeña producción de caolín lavado.

La provincia de Pontevedra figura en cuarto lugar como productora de arcillas refractarias, después de Asturias, A Coruña y Teruel.

- Las explotaciones se realizan a cielo abierto por los sis-
temas de canteras, bancos o cortas. La explotación está me-
canizada y suele ser intermitente debido a las condiciones
climatológicas y a las necesidades locales.

- Los estudios geoeconómicos realizados hasta el momento só-
lo afectan al área de Porriño-Tui, habiéndose ubicado para
el valle de Louro, unas reservas explotables de medio millón
de Tm. entre arcillas tipo ball-clay y fire-clay y sedimen-
tos de arenas caoliníferas. En esta estimación no se incluye
el fondo de la cuenca que está constituído por granito cao-
linizado in situ.

- El mercado de estas arcillas es regional, utilizado funda-
mentalmente en la fabricación de materiales refractarios
aluminosos, chamotas y grés, aunque los estudios técnicos
en este sentido son prácticamente inexistentes.
REFERENCIAS BIBLIOGRÁFICAS

202

Rematou-se de imprimir nos obradoiros
de GRAFICAS DO CASTRO/MORET
no mes de abril de 1983