

PLIEGO DE PRESCRIPCIONES TÉCNICAS Y DESCRIPCIÓN DEL MATERIAL QUE ES NECESARIO ADQUIRIR.

EXPEDIENTE Nº: 2008/1007

CENTRO: FACULTADE DE CIENCIAS DO DEPORTE E A EDUCACIÓN FÍSICA

DEPARTAMENTO / SERVICIO:

CARACTERÍSTICAS TÉCNICAS:(1)

INSTALACIÓN SISTEMA INTEGRADO DE ESTUDIO DEL MOVIMIENTO HUMANO

ÍNDICE

1. Sistema de análisis dinámico de la marcha	3
2. Plataforma de fuerza portátil para test de salto	5
 Sistema de análisis del movimiento con capacidad de sincronización en tiempo real con señales analógicas y digitales 	
4. Sistema de análisis del movimiento sin capacidad de sincronización con otros dispositivos	9
5. Sistema de electromiografía telemétrico y portátil	10
6. Sistema de medición de gases respiratorios telemétrico y portable	12
7. Obras diversas a ejecutar	14

1. SISTEMA DE ANÁLISIS DINÁMICO DE LA MARCHA

Se precisa un sistema de análisis de la marcha compuesto por los siguientes elementos:

- 1.1. Dos plataformas de fuerza triaxiales con sensores piezoeléctricos, especialmente diseñada para el estudio de momentos y fuerzas de reacción en cualquier dirección espacial.
 - Cada plataforma estará formada por cuatro células de carga piezoeléctricas triaxiales especialmente diseñada para el estudio de las fuerzas de reacción humanas.
 - Los amplificadores de las células de carga deberán estar integrados en las plataformas.
 - Características necesarias de las plataformas:
 - Tamaño mínimo: 600 x 400 mm
 - Altura máxima: 35 mm
 - Rango Fx, Fy: -2.5...2.5 kN
 - Rango de medida Fz: 0...10 kN
 - Frecuencia mínima natural de registro según ejes:
 - x, y: 350 Hz
 - z: 200 Hz
 - Longitud mínima de conexión de cada plataforma a la unidad de control: 10 m.
- 1.2. Software y hardware de adquisición de datos para Windows:
 - Hardware ha de estar integrado en un sistema DAQ que permita su uso mediante conexión USB 2.0 a un ordenador portátil:
 - Unidad de control: PC portátil para el control de las plataformas de fuerza, con la siguiente configuración mínima:
 - Tarjeta de interfaz de red.
 - Pantalla de 15.4".
 - Memoria RAM 2Gb
- (1) Se debe especificar detalladamente todas las características del material que se pretende adquirir. En ningún caso se harán indicaciones relativas a la marca, modelo o casa comercial.

- Disco Duro 160 Gb
- Unidad DVD/CD RW
- Licencia de S.O. Windows XP Profesional.
- Software ha de permitir:
 - Configuración de la plataforma y la adquisición de registros.
 - Adquisición en tiempo real de registros de fuerza y de centro de presiones.
 - Representación gráfica de: Fuerzas/tiempo y de la evolución del punto de aplicación de fuerzas o centro de presiones (CoP) y de vectores de F en 3D.
 - Análisis de los siguientes parámetros: Fuerza en los tres ejes (Fx, Fy, Fz, FO), momentos, Centro de Presión (COP), Coeficiente de Fricción (COF), comparación de diferentes pisadas, torque.
 - Cálculo de parámetros estándar para las aplicaciones marcha, estabilometria y deporte
 - Análisis de señales analógicas (EMG, acelerómetros, goniómetros).
 - Filtros digitales.
 - Análisis de frecuencias (FFT).
 - Toma manual de parámetros según protocolos definibles por el usuario
 - Registro multi-sesión de mediciones realizadas a un sujeto en diferentes fechas, permitiendo el análisis de su evolución.
 - Realizar búsquedas en las mediciones.
 - Selección de parámetros a estudiar.
- 1.3. Pasillo móvil para encastrar las plataformas
 - El pasillo no ha de requerir obra civil para su instalación.
 - Los módulos que constituyan el pasillo han de permitir su transporte y reubicación de forma sencilla.
 - Longitud mínima del pasillo: 3.5 m.
 - Altura del pasillo igual a la altura de las plataformas.
- (1) Se debe especificar detalladamente todas las características del material que se pretende adquirir. En ningún caso se harán indicaciones relativas a la marca, modelo o casa comercial.

- Acceso al pasillo mediante rampas.
- 1.4. Instalación y puesta en marcha de todos los dispositivos que integran el sistema de análisis de la marcha.
- 1.5. Se requiere manuales de uso del sistema y un curso de formación y capacitación para operar con el mismo.

2. PLATAFORMA DE FUERZA PARA TEST DE SALTO PORTÁTIL

Se precisa un sistema de registro de saltos con los siguientes elementos:

- 2.1. Plataforma de Fuerza con 4 sensores monoaxiales (Eje z) piezoeléctricos:
 - Características necesarias de las plataformas:

- Tamaño mínimo: 920 x 920 mm

- Altura máxima: 125 mm

- Peso máximo: 25 Kg

Rango de medida Fz: 0...10 kN

Frecuencia de muestreo: 500 Hz

- Alimentación: mediante baterías y mediante adaptador 220 y AC.
- Permitir conexión directa a PC portátil.
- 2.2. Software específico para el análisis de saltos que permita el registro en tiempo real.

3. SISTEMA DE ÁNALISIS DEL MOVIMIENTO CON CAPACIDAD DE SINCRÓNIZACIÓN EN TIEMPO REAL CON SEÑALES ANÁLÓGICAS Y DIGITALES.

Se precisa un sistema de análisis del movimiento 3D que integre los siguientes elementos:

- 3.1. Un sistema óptico multicaptura compuesto por un mínimo de 8 cámaras infrarrojas de alta resolución sincronizadas, con posibilidad de integrar hasta 12 cámaras, cuya frecuencia de adquisición no será menor de 250 Hz.
 - Volumen mínimo de trabajo: 5 m x 4 m x 3 m
 - Error de calibración en volumen mínimo de trabajo inferior al 2%
- (1) Se debe especificar detalladamente todas las características del material que se pretende adquirir. En ningún caso se harán indicaciones relativas a la marca, modelo o casa comercial.

- Con posibilidad de trabajar en ambientes exteriores, con luz natural.
- Captación del movimiento de marcadores pasivos con cálculo de coordenadas en tiempo real.
- Elementos de anclaje o de apoyo para la correcta situación de las cámaras.
- 3.2. Un sistema de control multicaptura con:
 - Doble procesador a 3 GHz o superior
 - Arquitectura de 64 bit
 - Mínimo 8 GB de memoria DDR
 - 400 Gb HD
 - 100 MbitEthernet card
 - Tarjeta de video independiente
 - Tarjeta de red 4 Gigabit
 - SO XP profesional

- Lector/grabador DVD
- Múltiples puertos PCI-X 133 Y 100 MHz, PCI Express Y Ethernet Gigabit dual PCI-X
- Pantalla LCD mínimo de 19" de alta resolución
- Sistema integrado para conectar dispositivos con señales analógicas o digitales, con convertidor de video analógico-digital y con disparador externo.
- 3.3. Sistema de video compuesto por al menos 2 cámaras de TV y un módulo de software para sincronizar en tiempo real con los restantes dispositivos.
 - Cámaras de video color de alta resolución
 - Frecuencia de adquisición mínimo de 25 Hz
 - Resolución mínima de vídeo: 640 x 480 pixel
 - Elementos de anclaje o de apoyo para la correcta situación de las cámaras.
- Se debe especificar detalladamente todas las características del material que se pretende adquirir. En ningún caso se harán indicaciones relativas a la marca, modelo o casa comercial.

- 3.4. Sistema de video de alta velocidad compuesto por al menos 1 cámara:
 - Frecuencia de adquisición mínimo: 250 Hz
 - Resolución mínima: 512 x 472 para la mínima frecuencia de adquisición
 - Elementos de anclaje o de apoyo para la correcta situación de las cámaras.
- 3.5. Módulos de software, que han de permitir
 - Captura: detectar y registrar posición marcadores
 - Cálculo: calcular posición tridimensional marcadores
 - Reconstrucción en tiempo real posición 3D marcadores
 - Análisis completo (cinemático, cinético, emg) con posibilidad de efectuar comparaciones.
 - Edición cinemática
 - Elaboración y edición de informes
 - Configuración de parámetros analógicos
 - El software ha de tener la posibilidad de:
 - Desarrollar modelos y guardarlos para su empleo en otros estudios
 - Diseñar protocolos personalizados
 - Exportar datos en múltiples formatos
 - Presentar de forma simultánea en pantalla los datos registrados mediante distintos sistemas
 - Digitalización automática y manual

- Calibrar el volumen de trabajo de forma automática o manual, con indicación del error de calibración.
- Disparar la grabación de forma automática como manual

- 3.6. Instalación y puesta en marcha de todos los dispositivos que integran el sistema de análisis de la marcha.
- 3.7. Se requiere manuales de uso del sistema y un curso de formación y capacitación para operar con el mismo.

4. SISTEMA DE ÁNALISIS DEL MOVIMIENTO SIN CAPACIDAD DE SINCRÓNIZACIÓN CON OTROS DISPOSITIVOS.

Se precisa un sistema de análisis del movimiento 3D que integre los siguientes elementos:

- 4.1. Un sistema óptico multicaptura compuesto por un mínimo de 12 cámaras infrarrojas, con posibilidad de integrar hasta 24 cámaras, cuya frecuencia de adquisición no será menor de 100 Hz.
 - Volumen mínimo de trabajo: 3 m x 3 m x 2 m
 - Error de calibración en volumen mínimo de trabajo inferior al 2%
 - Captación del movimiento de marcadores pasivos con cálculo de coordenadas en tiempo real.
 - Elementos de anclaje o de apoyo para la correcta situación de las cámaras.
- 4.2. Un sistema de control multicaptura con los siguientes requisitos:
 - 2.4 Doble procesador a 2 Ghz o superior
 - 1.5 Gb de RAM
 - S.O. Windows XP SP2
 - 2 USB 2.0 hi-speed
- 4.3. Software de captura
- 4.4. Sistema de conexión
- 4.5. Estructura y varita de calibración.

5. SISTEMA DE ELECTROMIOGRAFÍA TELEMÉTRICO Y PORTÁTIL

Se precisa un sistema de electromiografía compuesto por los siguientes elementos:

- 5.1. Unidad receptora (hardware) deberá contar con las siguiente características:
- (1) Se debe especificar detalladamente todas las características del material que se pretende adquirir. En ningún caso se harán indicaciones relativas a la marca, modelo o casa comercial.

- 8 canales de entrada dedicados a las señales de EMG.
- 8 canales auxiliares dedicados a interruptores de pie (footswitches).
- Posibilidad de entrada de otras señales: acelerómetros, goniómetros, EEG.
- Al menos 2 canales digitales para triggers y marcadores temporales.
- Amplificadores incorporados, ganancia regulable de modo independiente por canal.
- Frecuencia de adquisición hasta 10kHz para cada canal.
- Transmisión de datos inalámbrica
- Almacenamiento de datos en tarjeta de memoria digital como mínimo 256 Mb.
- Autonomía mínima de 4 horas.
- Peso: menor de 300 gramos.
- Rango de alcance estación de datos-unidad de adquisición: mínimo 25 m en interiores y 300 m en exteriores.

5.2. Electrodos inalámbricos:

- De superficie con batería incorporada y conexión tipo clip
- Frecuencia mínima de adquisición 3 Khz
- Transmisión de datos inalámbrica con la unidad receptora (pc)
- Autonomía mínima de 3 h
- Rango de alcance electrodos-unidad receptora: mínimo 25 m
- Peso: 8 gr máximo
- 5.3. Software de adquisición y elaboración de señales electromiográficas:
 - Adquisición y representación de datos
 - Software de osciloscopio
 - Mezcla de señal de video con EMG
 - Procesamiento de datos
- (1) Se debe especificar detalladamente todas las características del material que se pretende adquirir. En ningún caso se harán indicaciones relativas a la marca, modelo o casa comercial.

- Editar eventos
- Exportar datos en distintos formatos
- 5.4. Sistemas complementarios:
 - Plantillas de presión (4)
 - Electrogoniómetros (3)

6. SISTEMA DE MEDICIÓN DE GASES RESPIRATORIOS TELEMÉTRICO Y PORTABLE

Se precisa un sistema para el análisis del intercambio de gases pulmonar en base a cada una de las espiraciones realizadas que dispongan de las características siguientes:

- Tecnología "respiración a respiración"
- Alta capacidad de almacenamiento de datos (al menos 12000 respiraciones).
- Posibilidad de descargar los datos en un PC tras la realización del test.
- Transmisión de datos por telemetría (mínimo: 800 m)
- Posibilidad de alorimetría indirecta
- Integre Sistema GPS

6.1. El sistema ha de constar de

- Unidad central con baterías recargable (autonomía mínima de 4 h)
- Arnés

- Máscara
- Pulsómetro
- Unidad de telemetría
- Unidad de calibración

6.2. Especificaciones

Medidor del flujo	Turbina bidireccional digital de Ø 28 mm		
<u>Rango</u>	<u>0 -20 l/s</u>		
<u>Ventilación</u>	5-300 l/m ± 1%		
<u>Precisión</u>	$\frac{<0.7 \text{ cm} \frac{\pm 1/3}{2 \text{ O/l/s}} - 14 \text{l/s}}{4 \text{ ml}}$		
Resistencia			
Resolución Analizador de gas	Oxígeno (O ₂)	Diovide content (CO)	
Tipo	GFC	Dioxido carbono (CO ₂) NDIR	
Rango	7-24% O ₂	0-8% CO ₂	
Tiempo de respuesta	<120ms por 90% PS	<120ms por 90% PS	
<u>Precisión</u>	<u>0.02% O</u> ₂	0.01% CO ₂	
<u>Tipo batería</u>	<u>Ni-MH</u>	4 x 1.5V AA	
Peso (g)	<u>475</u>	330	
	<u>Distancia transmisión</u> <u>1000 m</u>		
Modulo GPS (g)	Modulo GPS (g) 80		

6.3. Software y parámetros de trabajo

- Base de datos de sujetos
- Selección de parámetros y gráficos.
- Detección automática y manual del umbral anaeróbico atendiendo al método de la modificación de la pendiente de la curva o por la definición de puntos por el usuario.
- Control de cualquier ergómetro mediante conexión interna.
- Visualización en tiempo real de las curvas de O₂ y CO₂ durante los test.
- Exportar ficheros en diferentes formatos.
- Elaboración avanzada de datos (filtros, suavizados, medias, etc.)
- Cinética del oxígeno (déficit, deuda, constancia temporal, etc.)
- Bucles de flujo-volumen de ejercicios.
- Parámetros y ecuaciones de predicción.
- Tipos de ajustes (lineal y exponencial).

7. OBRAS DIVERSAS A EJECUTAR

- 7.1. -Preinstalación de plataforma de fuerza en pista de atletismo
- 7.2. Preinstalación de plataforma de fuerza en Unidad de Investigación Neuromuscular, Control Motor y de Fuerza

Preinstalación de encastre de plataforma de fuerza y de pasillo de marcha en Unidad de Investigación de Aprendizaje

VALOR ESTIMADO: 258.620,69 € IMPORTE IVA (16%): 41.379,31 €

PRESUPUESTO BASE DE LICITACIÓN: 300.000,00 €

A Coruña, 17 de xullo de 2008

Vicerrectora de Investigación

Fdo.: Concepción Herrero Lòpez