MIFEFA

New Models for Fluid-Thin Structure Interaction with Applications

In nature, biology and industry, there are numerous examples of situations that can be modelled as Fluid-Structure Interaction problems (FSI for short). We are interested, in particular, in those cases in which some of the physical dimensions involved in the description of the problem are significantly smaller than the rest, thus resulting in a Fluid-Thin Structure Interaction problem (FTSI). Furthermore, in many cases, the deformation of the thin structure is constrained, or influenced, by the presence of another object, leading to Fluid-Thin Structure Interaction Contact problems (FTSIC). In this research we will develop and analyze new models describing these kinds of scenarios. These models will be supported by rigorous mathematical and numerical analysis results. Moreover, we will design numerical algorithms to be implemented in a computer, enabling the simulation and practical application of these new models.

Research Team

Dr. Ángel Daniel Arós Rodríguez

Titular de universidad (TIT-UN) - IP

Universidade da Coruña

Dr. José Manuel Rodríguez Seijo

Titular de universidad (TIT-UN) - IP

Universidade da Coruña

Dra. María Teresa Cao Rial

Titular de universidad (TIT-UN)

Universidade da Coruña

Dr. Gonzalo Castiñeira Veiga

Profesor Permanente Laboral

Universidade de Santiago

Dra. Raquel Taboada Vázquez

Profesora contratada doctora (PC-DR)

Universidade da Coruña

Dr. Juan Manuel Viaño Rey

Profesor emérito de universidad

Universidade de Santiago

Working Team

PhD. Célio Bruno Pinto Fernandes

Professor Auxiliar

Universidade do Porto

PhD. Sabrina Roscani

Investigadora adjunta CONICET Matemática

Universidad Austral

PhD. Mircea Sofonea

Professor

University of Perpignan

PhD. Lucas David Venturato

Becario doctoral CONICET

Universidad Austral

PhD Students

Célio Bruno Pinto Fernandes

Syeda Zoha Mazhar

  • Starting Workshop
  • ETAMM

 

 

Rodríguez-Arós, Á., Cao-Rial, M.T. Asymptotic analysis of linearly elastic shells in normal compliance contact: convergence for the elliptic membrane case. Z. Angew. Math. Phys. 69, 115 (2018). https://doi.org/10.1007/s00033-018-1008-8